prufer编码
文章平均质量分 54
_beginend
这个作者很懒,什么都没留下…
展开
-
bzoj 1211: [HNOI2004]树的计数 prufer编码
题意一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。分析可以知道一组prufer编码唯一对应着一棵树,一棵树也唯一对应着一组prufer编码。 对于一棵给定所有节点度数的树,显然每个点会在prufer编码中出现d-1次,那么我们排列组合原创 2016-11-17 20:49:33 · 592 阅读 · 0 评论 -
bzoj 1005: [HNOI2008]明明的烦恼 prufer编码+高精度
题意给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?如果对度数不要求,则输入-1 n<=1000分析根据prufer编码,很容易得知若一个点的最终读数为d,则该点在prufer序列里面出现的次数为d-1,那么对于其他度数不限的点,我们就可以放任意位置和次数。设有最终度数的点的∑d−1=tot\sum d-1=tot,有k个点的度数不要求那么ans=C原创 2016-11-18 07:47:42 · 386 阅读 · 0 评论 -
bzoj 1430: 小猴打架 prefer编码
题意一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过N-1次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程。原创 2016-11-15 21:50:47 · 448 阅读 · 0 评论 -
LibreOJ #2320.「清华集训 2017」生成树计数 prufer序列+组合数学+分治FFT
题意 有nnn个点,每个点有点权aiaia_i,定义一棵生成树TTT中第iii个点的度数为didid_i,那么该生成树的权值val(T)=(∏i=1nadiidmi)(∑i=1ndmi)val(T)=(∏i=1naididim)(∑i=1ndim)val(T)=(\prod_{i=1}^na_i^{d_i}d_i^m)(\sum_{i=1}^nd_i^m) 求所有生成树的价值的和,答案模998...原创 2018-06-18 21:55:44 · 986 阅读 · 0 评论