Oc-语句总结(3)--NSFileManager 文件管理器

1.是否可存,是否属于目录,是否可读,是否可写,可删除
2.按照递归(自己调用自己)方式获取子目录

NSString *str = @"we,are,famulei" ;
       
BOOL result = [str writeToFile : @"/Users/mac/Desktop/1.txt" atomically : YES ];
       
if (result){ NSLog ( @" 写入成功 " );} else { NSLog ( @" 失败 " );}
           // 文件管理器

  //1. 文件管理器的创建
        NSFileManager *fm = [ NSFileManager defaultManager ];
       
       
   //2. 判断一个文件是否存在,参数是文件路径
       BOOL result1 =  [fm fileExistsAtPath : @"/Users/mac/Desktop/1.txt" ];
       
if (result1) {
           
NSLog ( @" 文件存在 " );
        }
else { NSLog ( @" 文件不存在 " );}
   
       
   
//3.判断一个文件是否存在,且文件是否属于目录
       
BOOL isDir;
       
// 参数 2 表示该文件是否
       
BOOL result2 = [fm fileExistsAtPath : @"/Users/mac/Desktop/1.txt" isDirectory :&isDir];
            
// 判断是否为文件
       
if (result2) {
           
NSLog ( @" 文件存在 " );
        }
else { NSLog ( @" 文件不存在 " );}
             
// 判断是否为目录
       
if (isDir) {
           
NSLog ( @" 为文件夹 - 目录 " );
        }
else { NSLog ( @" 只是一个单纯的文件 " );}

   
   
//4.判断一个文件是否可读
       
BOOL result3 = [fm isReadableFileAtPath : @"/Users/mac/Desktop/1.txt" ];
       
if (result3) {
           
NSLog ( @" 文件可读 " );
        }
else { NSLog ( @" 文件不可读 " );}
   
   
       
//5.判断一个文件是否可写
        result3 = [fm
isWritableFileAtPath : @"/Users/mac/Desktop/1.txt" ];
       
if (result3) {
           
NSLog ( @" 文件可写 " );
        }
else { NSLog ( @" 文件不可写 " );}

   
       
//6.判断一个文件是否可删除
        result3 = [fm
isDeletableFileAtPath : @"/Users/mac/Desktop/1.txt" ];
       
if (result3) {
           
NSLog ( @" 文件可删除 " );
        }else{NSLog(@" 文件不可删除 " );}


//  获取子目录
        // 获取属性
       
NSDictionary *dict =  [fm attributesOfItemAtPath : @"/Users/mac/Desktop/1.txt" error : nil ];            // 字典接收
       
NSLog ( @"%@" ,dict);
         
// 获取创建时间
       
NSLog ( @"%@" ,dict[ @"NSFileModificationDate" ]);   // 键值对的概念
   
    
//1.按照递归方式获取子目录-----递归的方式是遍历到没有文件
         
NSArray *arr =  [fm subpathsAtPath : @"/Users/mac/Desktop/ 共享视频 " ];
         
NSLog ( @"%lu" ,arr. count );
         
NSLog ( @"%@" ,arr);
   
//2.按照非递归方式获取子目录---只遍历一层
       
NSArray *arr1= [fm contentsOfDirectoryAtPath : @"/Users/mac/Desktop/oc 讲义 " error : nil ];
       
NSLog ( @"%lu" ,arr1. count );
        NSLog(@"%@",arr1);


    // 文件管理器的创建
        NSFileManager  *fm = [NSFileManagerdefaultManager];
//创建文件
        NSString *str = @" 披星戴月 , 的,奔波,只为 , 那扇窗 " ;
       
// 将字符串转化为 NSdata 类型,转化为二进制, NSData 存储的是二进制
       
NSData *da = [str dataUsingEncoding : NSUTF8StringEncoding ];
       
BOOL   result  = [fm createFileAtPath : @"/Users/mac/Desktop/aaa.txt" contents:da attributes:nil];
       
if(result){NSLog(@"文件创建成功");}
       
else{NSLog(@"文件没有创建成功");}
//创建目录
       
//参数2的意思是:yesno,是否要创建中间目录
        result = [fm
createDirectoryAtPath:@"/Users/mac/Desktop/bbb/"withIntermediateDirectories:YESattributes:nilerror:nil];
       
if(result){NSLog(@"目录创建成功");}
       
else{NSLog(@"目录没有创建成功");}

//拷贝文件bbb
       
//参数1是:要拷贝的文件    参数2是拷贝到哪
    result =  [fm
copyItemAtPath:@"/Users/mac/Desktop/aaa.txt"toPath:@"/Users/mac/Desktop/bbb.txt"error:nil];
       
if(result){NSLog(@"文件拷贝成功");}
       
else{NSLog(@"文件没有拷贝成功");}
//移动文件
     
//参数1是:要移动的文件    参数2是移动到哪
        result =  [fm
moveItemAtPath:@"/Users/mac/Desktop/aaa.txt"toPath:@"/Users/mac/Desktop/11.txt"error:nil];
       
if(result){NSLog(@"文件移动成功");}
           
else{NSLog(@"文件没有移动成功");}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值