Python中计算数据分散程度的方法

Python计算数据分散度:方差、标准差与变异系数
337 篇文章 ¥129.90 ¥299.90
267 篇文章 ¥119.90 ¥299.90
本文介绍了Python中计算数据分散程度的三种方法:使用numpy库计算方差、标准差以及变异系数。方差是数据与平均值之差的平方和的平均数;标准差是方差的平方根,表示数据偏离平均值的程度;变异系数是标准差与平均值的比值,用于比较不同均值和标准差间的分散程度。

Python中计算数据分散程度的方法

数据分散程度是指数据集中各个数据之间的差异大小。在统计学中,我们可以使用多种方式来衡量数据的分散程度。本篇文章将介绍如何在Python中使用常见的方法来度量数据的分散程度。

1.方差(Variance)

方差是所有数据与平均值之差的平方和的平均数。在Python中,我们可以使用numpy库中的var()函数来计算方差。

import numpy as np

data = [2, 4, 6, 8, 10]<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NoABug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值