对抗样本(攻防赛冠军分享)

NIPS 2017对抗样本攻防赛冠军廖方舟的算法分享 清华大学化学生物学学士,清华大学生医系在读博士。研究兴趣:计算神经学、机器学习、计算机视觉。参加过多次Kaggle比赛,曾获2017年“数据科学碗”第一名,Data Science Bowl第一名,NIPS 2017对抗样本攻防比赛第一名。 对...

2019-05-19 11:38:43

阅读数 4

评论数 0

NLP(词向量、word2vec和word embedding)

最近在做一些文本处理相关的任务,虽然对于相关知识有所了解,而且根据相关开源代码也可以完成相应任务; 但是具有有些细节,尤其是细节之间的相互关系,感觉有些模糊而似懂非懂,所以找到相关知识整理介绍,分享如下学习。 本篇博客整理相关知识可谓详尽,详尽不免篇幅较长,静下心来慢慢体味。 整体结构流程如...

2019-05-13 18:21:15

阅读数 76

评论数 0

有些人光是活着就已经是拼尽全力了

“很奇怪,我这两天只是考虑吃东西。我完全没什么盼望,我甚至都不想,我努力工作只是希望吃一顿好的。” “就像一个只会把笔不断削短铅笔刨,只会削到剩下橡皮,却不会把笔削尖。” 有些人光是活着就已经是拼尽全力了。 没意思,好像等日子过一样,没有盼望。 《了不起的盖茨比》有一段经典对白: 在我年纪...

2019-05-09 22:01:14

阅读数 16

评论数 0

在硅谷,人生的可能性不只有 996

有个地方,能让我做正经事的996,还真的是“我们这些人修来的福报”。 上周四,半夜,我被工作搞疯了。 好不容易,写完一份代码,就是提交不上去 —— 因为有冲突。 就是说,我和别的,不知道在哪的同事,在对同一个文件进行改动,只能一次一个地提交。 不然就乱了,因为系统不知道以谁的为准。 而且,你要是...

2019-04-27 19:15:24

阅读数 98

评论数 0

Transformer再出发

Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN。 我们根据论文的结构图,一步一步使用 PyTorch 实现这个Trans...

2019-04-18 19:45:09

阅读数 131

评论数 1

CTC基本原理

CTC识别效果示意图 简介 谈及语音识别,如果这里有一个剪辑音频的数据集和对应的转录,而我们不知道怎么把转录中的字符和音频中的音素对齐,这会大大增加了训练语音识别器的难度。 如果不对数据进行调整处理,那就意味着不能用一些简单方法进行训练。 对此,我们可以选择的第一个方法是制定一项规则,如“...

2019-04-14 10:08:21

阅读数 151

评论数 0

彻底搞懂Bert

自google在2018年10月底公布BERT在11项nlp任务中的卓越表现后,BERT(Bidirectional Encoder Representation from Transformers)就成为NLP领域大火、整个ML界略有耳闻的模型,网上相关介绍也很多,但很多技术内容太少,或是写的不...

2019-04-12 10:26:52

阅读数 78

评论数 0

从底层到顶层,AI领域的创投新机会

人工智能技术作为重要的科技技术也受到资本的广泛关注,近日,高捷资本创始管理合伙人黎蔓,分享了多年来AI领域的投资心得,以及现阶段值得关注的细分赛道。 以下为黎蔓在“青桐大咖说”第38期上的重点分享内容(图片和内容均由高捷资本提供): •AI的发展阶段 •高捷资本在AI领域的投资策略 •AI底层基础...

2019-04-04 20:37:46

阅读数 622

评论数 1

深入理解one-stage目标检测算法(下篇)

前言 本文翻译自One-shot object detection,原作者保留版权,略有删减。 数据 有很多常用的目标检测训练数据集,如Pascal VOC, COCO, KITTI。这里我们关注Pascal VOC,因为它是最常用的,并且YOLO使用了它。 VOC数据集包含图像和不同任务的标注,...

2019-03-21 23:11:29

阅读数 445

评论数 0

深入理解one-stage目标检测算法Yolo/SSD(上篇)

前言 本文翻译自One-shot object detection,原作者保留版权,略有删减。 作为计算机视觉领域的一项重要任务,目标检测是要找到一张图片里的感兴趣物体: 这比图像分类任务更高级,因为分类只需要告诉图像中主要物体是什么,然而**目标检测要找到多个物体,不仅要分类,而且要定位出它们...

2019-03-21 22:09:52

阅读数 680

评论数 0

attention机制及self-attention(transformer)

最近接触的项目当中用到了transformer,学习相关知识之后其中一个重要的贡献就是引入了self-attention机制,了解了相关处理过程之后然而并没引起太多比较。 因为之前就已经有了attention机制,并得到了广泛的应用且取得了非常好的效果(读过一篇相关的机器翻译的文章)。 在被别人问...

2019-03-20 11:14:02

阅读数 250

评论数 0

Transformer原理到实践详解

本篇博客并没有什么独特见解之处,只是单纯的再一次加强巩固学习。 因为接触到的不少项目用到了,还是要拿过来好好研究学习一下的。 原文链接:https://blog.csdn.net/qq_41664845/article/details/84969266 代码详见:http://nlp.seas.h...

2019-03-08 16:44:45

阅读数 212

评论数 0

计算机视觉方向简介 | 目标检测最新进展总结与展望

最近一直在跟着博士师兄,接触学习处理目标检测相关的知识问题, 本篇文章对于相关知识进展及展望还是具有非常大的学习参考意义的。 导言 目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现...

2019-03-03 10:07:02

阅读数 425

评论数 0

Synthetic Data for Text Localisation in Natural Images(论文解读)

最近在做相关任务需要用到一些场景文本图像,于是找到了这篇论文;关于文本图像生成方法的思路还是很清晰的, 不过对于其具体执行、原理等了解掌握还是难度的;下面来稍微梳理一下思路、过程。 这篇论文所做的主要贡献有两点: 1.将文本嵌入到自然图片中,生成带有文本的图片。 2.提出一种FRCN的网络...

2019-03-01 11:30:08

阅读数 93

评论数 0

深度学习计算机视觉极限将至,我们该如何找到突破口?

深度学习是近年来人工智能技术发展的核心,虽然取得了巨大成功,但它具有明显的局限性。 与人类视觉系统相比,深度学习在通用性、灵活性和适应性上要差很多,而在遇到复杂的自然图像时,深度学习可能还会遇到机制性困难。 本文中,来自约翰霍普金斯大学的学者们向我们介绍了深度学习的几大极限,以及如何解决这些问题的...

2019-02-28 18:08:52

阅读数 78

评论数 0

E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text(论文解读)

端到端–多语言场景文字检测识别(E2E-MLT) MichalBušta¹,YashPatel²,JiriMatas¹¹ 捷克技术大学,捷克布拉格²机器人研究所,卡内基梅隆大学 摘要: 提出了一种用于多语言场景文本定位和识别的端到端可训练(完全可微)方法。 该方法基于单个完全卷积网络(FCN),具...

2019-02-27 15:47:11

阅读数 251

评论数 0

Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review(论文解读)

这是一篇关于图像处理(分类方向)的卷积神经网络发展的一个综述,聚焦于CNN在图像分类方向的应用,文章分析了:(1)他们早期的成功,(2)他们在深度学习复兴中的角色,(3)选择了象征性的工作成果,以及(4)通过回顾300多种出版物的贡献和挑战所带来的改进。 我们还介绍了他们目前的一些趋势和仍存在的挑...

2019-02-26 17:53:13

阅读数 563

评论数 0

吴恩达深度学习课程理论加实践(一、概述)

整套课程相对来说也是比较基础的,更多的是一种快速入门。学习者其实也没有硬性要求有一定相关基础,对于机器学习算法有一定相关了解即可(可以参见博客吴恩达机器学习系列理论加实践),关于实践部分给出了代码框架,对于python可以边用边学即可。 此系列文章并没有什么创新和添加,看完一遍更多是是一个回顾总结...

2019-02-22 18:28:22

阅读数 88

评论数 0

生而为人,我很抱歉

可上九天揽月,可下深海捉鳖; 是问题解决不了,还是根本没下定决心; 人们在锲而不舍、追逐“顶尖”科技的同时,到底是在追逐些什么。 吃饱了、穿暖了、小康了、成名了、有权了、有钱了,然后呢:名不 够响、权不够大、钱不够多、、、 物尽其用、人尽其才,本身没有错;但不应该是冷眼旁观、不以为然...

2019-02-22 16:25:11

阅读数 137

评论数 0

GitHub万星ML算法面试大全

不论是为了面试,还是单纯的用来学习了解,都是值得ML相关方向阅读的。项目中,作者为大家准备了 ML 算法工程师面试指南, 它提供了完整的面试知识点、编程题及题解、各科技公司的面试题锦等内容。目前该 GitHub 项目已经有 1 万+的收藏量。 如下所示为整个项目的结构,其中从机器学习到...

2019-02-22 15:34:35

阅读数 263

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭