关闭

POJ 1177 Picture 求多个矩形周长 -

178人阅读 评论(0) 收藏 举报
分类:

题目地址:http://poj.org/problem?id=1177

题目超级水。离散化后用个数组模拟一下就能过了

而且不能忍的是比线段树的方法空间更小,时间更短....OMG

940K 16MS

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn=5000+5;
int y[maxn*2],cnt[maxn*2];  //cnt指该区间被覆盖几层了 
struct Line{
	int x,y1,y2;
	bool bLeft;
	Line(int x=0,int y1=0,int y2=0,bool bl=false):x(x),y1(y1),y2(y2),bLeft(bl){}
	bool operator < (const Line& l) const {
		return x<l.x;
	}
}line[maxn*2];
int main()
{
	int T,x1,y1,x2,y2,ycnt=0,nline=0;
	cin>>T;
	while(T--)
	{
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		y[ycnt++]=y1; y[ycnt++]=y2;
		line[nline++]=Line(x1,y1,y2,true);
		line[nline++]=Line(x2,y1,y2,false);
	}
	sort(y,y+ycnt);
	ycnt=unique(y,y+ycnt)-y;
	sort(line,line+nline);
	int pm=0;
	for(int i=0;i<nline;i++)
	{	
		int L=find(y,y+ycnt,line[i].y1)-y;
		int R=find(y,y+ycnt,line[i].y2)-y;
		for(int j=L;j<R;j++)                
		{
			if(line[i].bLeft) {  //Add
				cnt[j]++; 
				if(cnt[j]==1) pm+=(y[j+1]-y[j]);
			} 
			else {              //Delete 
				cnt[j]--;
				if(cnt[j]==0) pm+=(y[j+1]-y[j]);
			}
		}
		int num=0,ok=1;
		for(int j=0;j<ycnt-1;j++)   //中间有几条线段 
		{
			if(cnt[j]&&ok) num++,ok=0;
			if(!cnt[j]) ok=1;
		}
		num*=2;
		if(i!=nline-1) pm+=num*(line[i+1].x-line[i].x);
	} 
	cout<<pm;
	return 0; 
}


线段树法:1296K 32MS

题目思路:http://www.cnblogs.com/shuaiwhu/archive/2012/04/22/2464876.html

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn=5000+5;
int y[maxn*2],nNode;
struct Node{
	int L,R,mid;
	int Covered;    //被  完全覆盖  的次数 
	int Len,cnt;    //Len该区间的线段长度,cnt该区间有几条线段 
	bool lLen,rLen; //左端点处,右端点处是否有线段 
	Node *pLeft,*pRight;
	Node(int l=0,int r=0):L(l),R(r){ 
		mid=(L+R)/2; 
		lLen=rLen=false;
		Covered=Len=cnt=0;
		pLeft=pRight=NULL;
	}
}tree[maxn*2];
struct Line{
	int x,y1,y2;
	bool bLeft;
	Line(int x=0,int y1=0,int y2=0,bool bl=false):x(x),y1(y1),y2(y2),bLeft(bl){}
	bool operator < (const Line& l) const {
		return x<l.x;
	}
}line[maxn*2];
void BuildTree(Node *root,int s,int e)
{
	*root=Node(s,e);
	if(s==e) return;
	root->pLeft=++nNode+tree;
	root->pRight=++nNode+tree;
	BuildTree(root->pLeft,s,root->mid);
	BuildTree(root->pRight,root->mid+1,e);
}
void update(Node *root)
{
	if(root->Covered>0) {
		root->lLen=root->rLen=true;
		root->Len=y[root->R+1]-y[root->L];
		root->cnt=1;
	}  
	else if(root->L==root->R) {
		root->lLen=root->rLen=false;
		root->Len=root->cnt=0;
	}
	else {
		root->Len=root->pLeft->Len+root->pRight->Len;
		root->lLen=root->pLeft->lLen;
		root->rLen=root->pRight->rLen;
		root->cnt=root->pLeft->cnt+root->pRight->cnt-(root->pLeft->rLen&&root->pRight->lLen);
		//这句很关键 
	}
}
void Add(Node *root,int s,int e)
{
	if(root->L==s&&root->R==e) {
		root->Covered++;
		update(root);
		return;
	}
	if(e<=root->mid)        Add(root->pLeft,s,e);
	else if(s>=root->mid+1) Add(root->pRight,s,e);
	else {
		Add(root->pLeft,s,root->mid);
		Add(root->pRight,root->mid+1,e);
	}
	update(root); 
}
void Delete(Node *root,int s,int e)
{
	if(root->L==s&&root->R==e){
		root->Covered--;
		update(root);
		return; 
	}
	if(e<=root->mid)        Delete(root->pLeft,s,e);
	else if(s>=root->mid+1) Delete(root->pRight,s,e);
	else {
		Delete(root->pLeft,s,root->mid);
		Delete(root->pRight,root->mid+1,e);
	}
	update(root); 
}
int main()
{
	int T,x1,y1,x2,y2,ycnt=0,nline=0;
	cin>>T;
	while(T--)
	{
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		y[ycnt++]=y1; y[ycnt++]=y2;
		line[nline++]=Line(x1,y1,y2,true);
		line[nline++]=Line(x2,y1,y2,false);
	}
	sort(y,y+ycnt);
	ycnt=unique(y,y+ycnt)-y;
	nNode=0; BuildTree(tree,0,ycnt-1);
	sort(line,line+nline);
	int pm=0,lastLen=0;
	for(int i=0;i<nline;i++)
	{
		int L=find(y,y+ycnt,line[i].y1)-y;
		int R=find(y,y+ycnt,line[i].y2)-y;
		if(line[i].bLeft)  Add(tree,L,R-1);
		else               Delete(tree,L,R-1);
		pm+=abs(tree[0].Len-lastLen);
		lastLen=tree[0].Len;
		if(i!=nline-1) pm+=tree[0].cnt*2*(line[i+1].x-line[i].x);
	}
	cout<<pm;
	return 0;
}


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

POJ 1177 Picture(矩形并的周长)

题目链接: POJ 1177 Picture//926K 16MS #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algo...
  • Ramay7
  • Ramay7
  • 2016-03-26 12:10
  • 159

poj 1177 Picture(线段树+矩形周长并)

题意:给出平面的n个矩形,
  • qian99
  • qian99
  • 2014-05-05 14:40
  • 581

poj 1177 Picture(扫描线+矩形周长并)

http://poj.org/problem?id=1177 求矩形的周长并,明确的一点是对于覆盖的边的长度忽略不计。 与求面积并类似,首先离散化,对矩形的每条横边从下往上扫描。扫描过程中要完成三个任务,更新相应的区间信息,求横边长,求竖边长。 节点信息: l,r:左右区间编号 cnt:表示...
  • u013081425
  • u013081425
  • 2014-08-15 13:24
  • 898

poj 1177 矩形并的周长

可以扫一遍,同时求长和宽的增加段;也可以
  • cqsh3vj2
  • cqsh3vj2
  • 2014-07-17 08:30
  • 269

POJ 1177 Picture(扫描线求周长)

与求面积并的差不多,但是这个与扫描的方向相同的情况不太好处理,如果扫描线离散化两次扫两遍其实也可以解决这个问题,但是这样无论在时间还是空间上稍微就有点浪费了啊。这里因为我是离散x坐标的所以对于平行于y轴的方向上的统计比较难统计。处理的方法是:标记区间左边的断点,和右边的断点,求出这个区间一共有多少个...
  • xu12110501127
  • xu12110501127
  • 2014-08-08 20:46
  • 794

矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)

转自:http://blog.csdn.net/lwt36/article/details/48908031 HDU 1542 [POJ 1151] Atlantis (矩形面积并) 题意: 求N=100个矩形的面积并 分析: 离散化: ...
  • u013220054
  • u013220054
  • 2017-06-15 19:43
  • 404

poj 1177 区间树求矩形周长并

题意:        在平面上给若干矩形,求它们的周长并。 分析: 用区间树维护x轴上区间的一些覆盖属性。区间树维护的是一些区间的性质,构造为build(l,mid),build(mid,r),线段树维护的是一些点的性质,构造为build(l,mid),bui...
  • sepNINE
  • sepNINE
  • 2016-02-27 15:50
  • 356

矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)

HDU 1542 [POJ 1151] Atlantis (矩形面积并) 题意: 求N<=100个矩形的面积并求N<=100个矩形的面积并分析: 离散化: 这些技巧都是老生常谈的了, 不然浮点数怎么建树, 离散化xx坐标就可以了 扫描线: 首先把矩形按yy轴分成两条边, 上...
  • lwt36
  • lwt36
  • 2015-10-05 01:24
  • 3534

线段树辅助——扫描线法计算矩形周长并(轮廓线)

例题:hdu 1828 Picture 有两种方法,不过常用的第二种,两种都说一下。 第一种: 把矩形分成横线和竖线去处理,可知是完全相同的操作,我们来讲下怎么算出横线部分,竖线部分就是照搬即可。 将横线保存在一个表中,按横线所处的竖直位置排序(升序),另外每条横线带一个...
  • chaoweilanmao
  • chaoweilanmao
  • 2015-05-17 20:52
  • 559

【题】【线段树(lazy)】NKOJ 1868 矩形周长【USACO5.5.1】Picture

NKOJ 1868 【USACO5.5.1】Picture矩形周长 时间限制 : 10000 MS 空间限制 : 65536 KB 问题描述 N(N<5000) 张矩形的海报,照片和其他同样形状的图片贴在墙上。它们的边都是垂直的或水平的。每个矩形可以部分或者全部覆盖其他矩形。所有...
  • Y__XV
  • Y__XV
  • 2016-07-12 17:07
  • 556
    个人资料
    • 访问:74287次
    • 积分:5205
    • 等级:
    • 排名:第6155名
    • 原创:467篇
    • 转载:6篇
    • 译文:0篇
    • 评论:7条
    最新评论