自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(216)
  • 资源 (18)
  • 收藏
  • 关注

原创 使用循环抵消算法求解最小费用流问题

道路系统、水管网络或数据网络是催生"流问题"这类优化问题的实际背景。这类系统的共同特征在于:某种资源需要通过图的边进行传输,而每条边都有流量承载上限的约束。在某些情况下,边还具有其他属性,因此需要为特定边的使用分配成本——例如高速公路网中可变的通行费。在这种背景下,如何以最低成本将特定流量通过网络输送就成为一个值得研究的问题。该问题被称为"最小费用流问题"。

2025-07-04 20:00:17 1049

原创 使用蚁群算法求解VRPTW问题

蚂蚁在路径选择时综合评估信息素(历史经验)和启发式信息(如距离/时间成本),可无缝嵌入时间窗惩罚函数。如先满足硬时间窗,再优化路径长度,可通过设计信息素更新规则实现(仅对可行解释放信息素)。突发情况(如某点临时关闭)可通过局部信息素重置快速响应,优于传统数学规划需重新建模。自适应调整α/β参数:初期高探索性(β主导),后期高开发性(α主导),提升收敛效率。蚁群算法(ACO)适合求解带时间窗的车辆路径优化问题(VRPTW),主要基于其。信息素挥发机制(ρ参数)能逐步淘汰违反约束的路径,自适应聚焦可行解区域。

2025-05-06 21:34:52 1010

原创 使用coze搭建我的第一个AI Agent

AI Agent(人工智能代理)是指一种具备自主决策能力的软件程序或系统,能够在一定的环境中执行任务、作出决策,并根据预定目标采取行动。AI Agent 通常依赖于人工智能技术,如机器学习、自然语言处理和自动推理等,来感知周围环境、与人类或其他系统进行交互,进而解决特定问题或实现目标。

2025-01-23 23:17:07 1654

原创 基于强化学习的多码头集卡路径优化

第一个文件的训练过程消耗了最长的训练时间,大约运行了119小时,而剩余文件的训练过程平均只需要40分钟。这种现象发生的原因是,在第一个文件的前750个回合中,DQN从头开始构建学习模型,而接下来的训练过程则利用了之前训练过程中训练好的模型。在ITTRP中,智能体的最终目标是找到一条最优的集卡路径,该路径使集卡的总成本最小(travel cost、空驶成本empty truck trip cost和惩罚成本)。等待,设置较小的奖励为0.01,这是合理的,同时避免智能体认为该动作是最佳动作,防止多次选择。

2024-10-18 20:11:28 779

原创 使用Gradio搭建聊天UI实现质谱AI智能问答

1、获取api_key智谱AI开放平台网址:2、安装库3、执行一下代码,调用质谱api进行问答。

2024-04-30 15:54:44 1925 1

原创 使用Java调用Cplex求解带时间窗的车辆路径问题

在使用大M法的时候,务必注意M的取值:不能取太小,也不能取太大!取太小可能导致出现不可行解,取太大可能会因为计算机的精度问题导致约束失效。待优化的问题即为,如何决策车辆访问客户的路径,使得在满足一定约束的条件下,实现最小化总成本的目标。如果尝试减去数据类型的最大可能值,则这将导致一些计算问题。表示了车站与客户之间,以及客户之间的有向连接。所有车辆通常是同质化的,每辆车都存在容量上限。所有节点的集合可表示为。会导致求解出现问题,得不到最优解。个点组成,其中客户由。,时间可以包括在弧上。都有需要被满足的需求。

2024-02-21 21:29:28 1097

原创 数据处理与统计分析——MySQL与SQL

数据库:DB(DataBase)概念:数据仓库,软件,安装在操作系统之上作用:存储数据,管理数据。

2023-08-20 12:42:05 1076 1

原创 基于随机森林的波士顿房价预测

波士顿房地产市场竞争激烈,而你想成为该地区最好的房地产经纪人。为了更好地与同行竞争,你决定运用机器学习的一些基本概念,帮助客户为自己的房产定下最佳售价。幸运的是,你找到了波士顿房价的数据集,里面聚合了波士顿郊区包含多个特征维度的房价数据。你的任务是用可用的工具进行统计分析,并基于分析建立优化模型。这个模型将用来为你的客户评估房产的最佳售价。读取数据 CRIM ZN INDUS CHAS NOX R

2023-08-11 10:39:50 1632

原创 基于梯度下降算法的无约束函数极值问题求解

导数(Derivative),也叫。又名,是微积分中的重要基础概念。。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。对于一条直线来说,求该直线的斜率就是找到该直线上两个点x1​y1​和x2​y2​,分别求出两点在y和x上的增量。因此斜率就是y的改变量比上x的改变量,即ktanθΔyΔx​x2​−x1​y2​−y1​​。

2023-07-06 00:21:09 1658

原创 基于粒子群算法的无约束优化问题求解

粒子群算法(Particle Swarm Optimization,PSO)是由美国心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出的一种算法,算是比较老也是非常经典的算法之一。采用Java编程粒子群算法求解了无约束优化问题中常用的几个测试函数。

2023-07-01 14:18:54 2001

原创 基于NSGA-II算法的多目标多旅行商问题建模求解

NSGA-II算法学习过程中涉及到了较多内容,除了遗传算法中,核心步骤外,又融入了等内容。在GA中,通常采用轮盘赌选择策略,为了加快收敛保留全局最优解,在采用轮盘赌的同时,通常引入精英保留(精英策略)提升算法性能。对于和,通常在原染色体上进行,生成子代染色后,直接替换掉原染色体。在NSGA-II中,每次迭代过程中,为了保证多样性,探索解空间,(采用的锦标赛选择)、和产生子代种群后不会进行替换。此时有原种群P,及选择交叉变异后得到子代种群Q,P、Q种群规模均为N,合并P和Q为2N的新种群R。

2023-06-26 00:23:32 2380

原创 基于Cplex求解器的JavaAPI语法使用

通过"// 定义一个浮点型的决策变量lb:lower bound,变量的下届ub:upper bound,变量的上届变量类型::连续变量“x”:变量的名字,可选择的项整形变量通过// 写法1:定义一个整型的决策变量// 写法2:以上写法等价于如下写法,从源码来看,model.intVar()方法内部还是调用了model.numVar()方法,因此两种写法等价,但此时不在需要传参IloNumVarType.Int:0-1变量通过进行定义:还有另一种简单写法,即。

2023-05-22 00:04:25 2149

原创 基于自适应遗传算法的TSP问题建模求解(Java)

普通遗传算法(Sample Genetic Algorithm, SGA)存在着严重的缺点,它的Pc和Pm的值是固定的,本文采用自适应遗传算法进行求解TSP问题。不管是优良个体还是劣质个体都经过了相同概率的交叉和变异操作。

2023-04-14 23:55:04 3480 9

原创 基于遗传算法的CVRP建模求解(Python)

单向:纯取货/纯送货;单配送中心:只有一个配送中心/车场;单车型:只考虑一种车型,需求不可拆分:客户需求只能有一辆车满足;车辆封闭:完成配送任务的车辆需回到配送中心;车辆充足:不限制车辆数量,即配送车辆需求均能满足;非满载:任意客户点的需求量小于车辆最大载重;优化目标:最小化车辆启动成本和车辆行驶成本之和;约束条件:车辆行驶距离约束,重量约束;已知信息:配送中心位置、客户点位置、客户点需求、车辆最大载重、车辆最大行驶距离、车辆启动成本、车辆单位距离行驶成本;min⁡Z=C0K+C1∑i=0N

2023-03-08 14:59:57 10252 43

原创 pydantic|python数据验证和设置管理库

简单来说,pydantic 是一个让你能够 confidently(有信心地)处理数据的库。你无需编写大量的 if-else 语句来检查数据是否有效,只需定义一个模型,剩下的验证和转换工作 pydantic 都会为你自动完成。这使得代码更加简洁、健壮和易于维护。Web 应用的 API 接口(请求/响应)配置文件解析数据处理和清洗管道命令行工具的参数解析。

2025-09-21 14:22:14 270

原创 逻辑斯蒂回归

特性二分类逻辑斯谛回归多分类逻辑斯谛回归 (OvR)多分类逻辑斯谛回归 (Softmax)适用问题只有两个类别两个及以上类别两个及以上类别核心函数SigmoidSigmoid (多个)Softmax(单个)输出一个概率值 (属于正类的概率)K个独立的概率值一个概率分布(K个概率值,总和为1)训练方式训练一个模型训练K个独立的二分类模型训练一个单一的、输出K个值的模型特点简单直观易于理解实现,但类别较多时效率低,且可能存在“不确定”区域更高效、理论更严谨,是处理多分类的首选方法。

2025-09-21 09:54:57 383

原创 使用LangChain构建标准化AI应用开发框架

这段代码创建了一个。

2025-09-20 16:32:41 604

原创 单向集装箱租赁定价与调运策略研究

[1] PARK J, MOON I. Rental pricing and empty container repositioning strategy for a one-way container rental service[J/OL]. Ocean & Coastal Management, 2025, 267: 107684. DOI:10.1016/j.ocecoaman.2025.107684.全球贸易主要通过海上运输进行,其占全球贸易总量的85%。在各种货物类型中,集装箱贸易量占海运贸易总

2025-08-27 09:27:10 1040

原创 云计算资源分配问题

它是一个在超大规模、多维、动态变化的环境下,综合考虑技术效率(利用率、性能)和经济收益(成本、收入),并受到服务等级协议(SLA)严格约束的多目标NP-Hard优化问题。规划层:长期容量规划,决定何时何地建数据中心。分配层:使用先进的调度算法(如基于遗传算法、蚁群算法、深度强化学习的调度器)进行虚拟机放置。调度层:更细粒度的、短期的任务调度(如Kubernetes中的调度)。市场层:通过定价模型(如拍卖)来调节供需,引导用户行为。

2025-08-27 09:21:40 413

原创 Python使用数据类dataclasses管理数据对象

dataclasses 是 Python 3.7 引入的一个标准库模块,用于简化数据类的定义。它通过装饰器 @dataclass 自动生成类的一些常用方法,从而减少样板代码,特别适合那些主要用于存储数据的类。1. 减少样板代码传统类需要手动编写__init____repr____eq__# 传统类# 传统类 class Person : def __init__(self , name : str , age : int) : self . name = nameself . age!

2025-08-17 22:59:40 1086

原创 使用遗传编程自动进化函数与表达式

遗传编程(Genetic Programming, GP)是一种进化计算技术,属于进化算法的一个分支。它的核心思想是模拟达尔文的自然选择过程(“物竞天择,适者生存”)来自动地、进化地在程序空间(或算法空间中)搜索,进而生成计算机程序或数学表达式,以解决特定的问题。简单来说,遗传编程的目标是:让计算机自己“发明”出解决问题的程序或公式,而不是由人类程序员手动编写。遗传编程(GP)在自动程序设计领域的一个经典应用是符号回归(Symbolic Regression),即自动发现拟合数据的数学公式。这是一个例子:假

2025-08-17 18:23:40 815

原创 选择式与生成式超启发算法总结

本文的“超启发式”体现在其。

2025-08-16 17:59:05 934

原创 Git代码版本管理

安装 Git配置全局身份(只需做一次)生成并添加 SSH 公钥(推荐,省掉每次输密码)登录 GitHub → Settings → SSH and GPG keys → New SSH key → 粘贴保存。(将cat ~/.ssh/id_ed25519.pub生成的Key复制到github的Key栏中)

2025-08-15 23:14:52 1041

原创 Python运行时模块热加载与即时调用

需要将存储读取json文件的中的代码(code)和数据(input),将input传参给code中optimize函数。考虑运行时模块热加载(runtime module hot-loading)与即时调用的机制,其核心是一种**动态代码注入(dynamic code injection)与反射式执行(reflective execution)**流程。涉及tempfiletextwrapimportlibinspect四个模块,一下对其进行介绍。

2025-08-15 00:13:07 1017

原创 大型语言与进化算法潜在研究方向与挑战

图1通过结构化对比图,展示了LLMs和EAs在五个关键概念上的相似性,旨在揭示两者在机制设计上的内在联系。大型语言模型(LLMs)进化算法(EAs)对应说明标记表示(Token Representation)个体表示(Individual Representation)LLM中的每个token对应EA中的一个个体,代表基本的信息单元位置编码(Positional Encoding)适应度塑造(Fitness Shaping)位置信息为token赋予顺序意义,类似EA中适应度函数塑造个体优劣。

2025-08-10 19:59:31 1072

原创 基于进化算法的假新闻检测优化框架(FDOF)

这篇论文提出了一种名为,旨在通过优化提示(prompt)来提升大型语言模型(LLM)在假新闻检测任务中的性能和可解释性。其核心思想是将传统的机器学习方法、进化算法和大型语言模型相结合,形成一个两阶段的系统化流程。

2025-08-07 16:20:13 942

原创 从黑箱到理解模型为什么(模型可解释性与特征重要性分析)

特征重要性分析是连接“黑箱模型”与人类理解的桥梁。它不仅帮助我们优化模型,还能揭示数据背后的业务逻辑。选择合适的方法(如树模型重要性、SHAP、排列重要性)并结合领域知识,才能得出有意义的结论。

2025-07-30 13:44:43 812

原创 机器学习项目完整流程详解

机器学习的完整流程是一个系统化、迭代的过程,通常包括从问题定义到模型部署和维护的多个关键步骤。

2025-07-30 13:39:10 824

原创 机器学习如何判断一个模型是否靠谱(模型评估)

模型可能在训练集上表现很好(如准确率99%),但在新数据上表现很差 —— 这叫过拟合(Overfitting)。我们常常尝试多种模型(如逻辑回归 vs 决策树 vs 神经网络),需要一个客观、可量化的标准来判断哪个模型更好。模型评估通过测试集或交叉验证,检验模型是否真正泛化(Generalization) 而不是死记硬背。

2025-07-30 10:50:05 1230

原创 机器学习没有最好的模型,只有最合适的选择(模型选择)

机器学习领域存在"没有免费午餐"定理,没有任何一种模型在所有问题上都表现最优。不同模型有各自的优势和适用场景。同一数据集上,不同模型的预测性能可能有巨大差异。例如,线性关系明显的数据上线性模型可能表现优异,而复杂非线性关系则可能需要树模型或神经网络。

2025-07-30 10:22:33 1022 1

原创 MacOS突然连接WiFi但没有网络解决办法

MacBook 能成功连接 Wi-Fi 或手机热点(显示已连接),但无法访问网页,提示“代理服务器出现问题或者地址有误”。经过重置网络设置中的**代理选项**后问题解决。下面我们来解释**为什么取消所有代理选项能解决这个问题**。

2025-07-19 00:25:07 317

原创 从动态规划到贪心算法&活动选择问题

活动选择问题的核心是通过贪心策略(每次选最早结束的活动)高效地找到最大兼容子集。在会议室安排、课程调度、电视节目排期等实际场景中都有广泛应用。

2025-07-15 14:07:33 1264 1

原创 智能技术在物流环节中的应用

采集数据(传感通信+边缘计算)-理解数据-响应数据(自主决策)

2025-07-15 14:04:35 169

原创 基于比较的排序算法

排序算法是面试必问题目,每次看视频都感觉自己会了,但过几个月就忘记,面试被问到也没答上来,需要反复练习。

2025-07-15 14:02:47 1031

原创 Python调用Gurobi求解器日志解析

【代码】Python调用Gurobi求解器日志解析。

2025-06-05 15:21:00 368

原创 python开发环境管理和包管理

Python 环境管理是指创建和管理多个隔离的 Python 运行环境,使得每个项目可以使用不同的解释器版本和依赖库版本。Python 包管理是指对 Python 第三方库的安装、卸载、更新和版本控制的过程。

2025-05-23 22:45:46 454

原创 使用Poetry管理Python项目学术版Gurobi安装步骤

在poetry中安装gurobipy后有许可限制,运行大规模问题报错如下,需要申请许可。

2025-05-19 16:38:17 1003

原创 MacOS使用pyenv+poetry管理python项目

本文介绍了如何在macOS上安装pyenv和Python,并使用Poetry管理Python项目。首先,通过Homebrew安装pyenv,并配置环境变量。接着,安装指定版本的Python,并设为全局默认。然后,使用官方脚本安装Poetry,并验证安装结果。最后,使用Poetry创建Python项目,指定Python版本,添加依赖,并运行项目。Poetry会自动生成项目结构,包括pyproject.toml、poetry.lock等文件,便于依赖管理和项目运行。

2025-05-12 00:51:50 658

原创 命令行解释器中shell、bash和zsh的区别

命令行解释器(Command Line Interpreter)是用户与操作系统内核之间的桥梁,负责接收并执行用户输入的命令。Shell 是命令行解释器的统称,常见的类型包括 sh、bash、zsh、fish 和 PowerShell。其中,bash 是 Linux 和旧版 macOS 的默认 Shell,兼容 sh 并支持命令历史、自动补全等功能。zsh 则是一种功能更强大、可定制性更高的 Shell,支持插件系统,用户体验更佳,新版 macOS 已将其设为默认 Shell。

2025-05-11 20:04:32 1411

原创 遗传算法求解多车型VRP问题

客户排列 + 分割点”(Giant Tour + Split)方法。该方法通过将客户ID与分隔符(如0)结合形成染色体,解码时根据分隔符划分路线,并检查容量、时间窗等约束条件进行车辆分配。其优点在于结构简单,可直接应用经典遗传算法算子,但缺点是解码复杂,容易产生不可行解,且分隔符位置对解质量影响较大。

2025-05-08 21:36:27 1063

基于自适应遗传算法的TSP问题建模求解(Java)

基于自适应遗传算法的TSP问题建模求解(Java)

2024-08-11

C:\Users\pengkangzhen\Documents\WeChat Files\wxid-k2c7i8tc5u7v22

C:\Users\pengkangzhen\Documents\WeChat Files\wxid-k2c7i8tc5u7v22

2024-07-17

cplex解题器用户手册.pdf

cplex解题器用户手册.pdf

2021-03-22

车辆路径优化问题(VRP)变体及数学模型

车辆路径优化问题(VRP)变体及数学模型

2024-03-15

VRPTW问题Solomon标准测试数据集

VRPTW问题Solomon标准测试数据集

2024-02-21

top K最短路径问题(K Shortest Path Routing)K最短路径算法与应用分析.pdf

top K最短路径问题(K Shortest Path Routing)K最短路径算法与应用分析.pdf

2023-12-22

基于Cplex的人员排班问题建模求解(JavaAPI)

基于Cplex的人员排班问题建模求解(JavaAPI)

2023-12-06

基于or-tools的人员排班问题建模求解(JavaAPI)

基于or-tools的人员排班问题建模求解(JavaAPI)

2023-11-21

疫情期间的护士排班优化模型及智能算法

疫情期间的护士排班优化模型及智能算法

2023-09-22

基于蚁群算法的动态VRP问题离线误差计算

file:///C:/Users/pengkangzhen/Documents/WeChat%20Files/wxid_k2c7i8tc5u7v22/FileStorage/File/2023-08/Mavrovouniotis%20%E5%92%8C%20Yang%20-%202015%20-%20Ant%20algorithms%20with%20immigrants%20schemes%20for%20the%20dyn.pdf

2023-09-09

机器学习实战-波士顿房价预测

机器学习实战-波士顿房价预测

2023-08-11

基于粒子群算法的无约束优化问题求解(Java)

在连续优化问题中,无约束优化问题除了可以用梯度下降算法,牛顿法,共轭梯度等算法,智能优化算法因其寻优速度快,全局收敛等特点,也得到了广泛应用。采用Java编程PSO算法求解无约束优化问题。

2023-07-01

基于NSGA-II算法的多目标多旅行商问题建模求解(Java)

采用TSP测试算例eil51.txt进行实验,设置3个旅行商,求解本文双目标多旅行商TSP问题。算法设置最大迭代次数MAXGEN=1000;交叉概率pc=0.8,变异概率pm=0.2,设置所有旅行商出发和返回城市为depot=5。采用Java编程NSGA-II对多目标多旅行商问题进行求解。

2023-06-27

TSP问题att48.txt

TSP问题att48.txt

2023-05-21

彭康真-作业2-自适应遗传算法求解旅行商问题(Matlab作业)

彭康真-作业2-自适应遗传算法求解旅行商问题(Matlab作业)

2023-04-15

自适应遗传算法求解旅行商问题(Java代码)

普通遗传算法(Sample Genetic Algorithm, SGA)存在着严重的缺点,它的Pc和Pm的值是固定的,本文采用自适应遗传算法进行求解TSP问题。这会引起两个很严重的问题: (1)相同的概率,这可以说是不公平,因为对于优良个体,我们应该减小交叉变异概率,使之能够尽量保存 ; 而对于劣质个体,我们应该增大交叉变异概率,使之能够尽可能的改变劣质的状况 。所以,一成不变的交叉变异概率影响了算法的效率。 (2)相同的概率总不能很好的满足种群进化过程中的需要,比如在迭代初期,种群需要较高的交叉和变异概率,已达到快速寻找最优解的目的,而在收敛后期,种群需要较小的交叉和变异概率,以帮助种群在寻找完最优解后快速收敛。所以,一成不变的交叉变异概率影响了算法的效率。

2023-04-15

基于遗传算法的CVRP建模求解-Python代码

https://blog.csdn.net/qq_43276566/article/details/129402447 基于遗传算法的CVRP建模求解-Python代码

2023-03-10

表上作业法-运输问题(Java)

表上作业法-运输问题(Java)

2021-07-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除