数据结构
lu的博客
api之路
展开
-
图<1>
图知识点简要介绍: 有向图、无向图有向图:顶点与顶点之间的是弧,弧又分为弧尾和弧头出度(指出去的弧数量)与入度(指进来的弧数量)无向图:顶点与顶点之间的是边,邻节点(相邻的顶点) 连通图:对于任何一个顶点来说都有通往其他节点的路径(直接或间接路径) 完全图:对于任何一个顶点来说都有通往其他节点的路径(直接路径):边数 = n(n-1)/原创 2016-09-11 09:33:16 · 919 阅读 · 0 评论 -
树--二叉树的链表实现
树--二叉树的链表实现简要介绍......二叉树的链表实现: Tree.h#ifndef TREE_H#define TREE_H#include"Node.h"//-----------------------------------//-----二叉树的数组表示--------------class Tree{ public: T原创 2016-09-05 15:52:10 · 1140 阅读 · 0 评论 -
树--二叉树的数组实现
树--二叉树的数组实现简要介绍:树是节点的有限集合度:当前结点的子节点的数量叶子:(终端节点)根:(非终端节点)有序数:子节点不能互换顺序无序数:子节点能互换顺序深度:节点深度和树的深度节点深度:第一层深度为1,第二层深度为2,第三层深度为3...数的深度:当前树的节点所具有的最大深度森林:多颗独立的树,一棵树看成由不同的子树,也是森林原创 2016-09-04 16:04:47 · 3835 阅读 · 0 评论 -
线性表(2)--链表模拟
线性表(2)--链表模拟线性表--链表的类实现:简要介绍: 物理存储单元非连续、非顺序的存储结构,逻辑结构,由一系列的节点组成节点:由指针域和数据域组成分类:单向链表、静态链表、双向链表、循环链表优点: 插入与删除快,大小可变不用去确定缺点: 与顺序表相比操作复杂,查找较差,找数必需从头开始找//--------------原创 2016-09-03 15:56:10 · 355 阅读 · 0 评论 -
线性表(1)--顺序表模拟
线性表(1)--顺序表模拟顺序表:知识点简要介绍: 基本的数据结构,在计算机内存中以数组的形式保存的线性表,指用一组地址连续的存储单元依次存储数据元素的线性结构如 栈、队列,有”第一元素“、”最后元素“;有前驱、后继之说优点: 遍历和寻址时效率高,定位具体元素快缺点: 插入和删除效率一般 链表的模板实现: 适用于任意原创 2016-09-02 16:24:49 · 365 阅读 · 0 评论 -
栈机制应用——括号匹配[()]
栈机制应用——括号匹配[()]描述:任意输入一组括号,判断括号是否匹配示例:[()] {{()} ([]) [()()]运用:栈机制//界面与界面的实现参考:栈的实现代码:http://blog.csdn.net/qq_35244529/article/details/52399211//应用demo.cpp#include#原创 2016-09-01 16:24:47 · 361 阅读 · 0 评论 -
栈机制--模拟实现原理
栈机制--模拟实现原理知识点简要介绍: 栈:限定在表头进行插入和删除操作的线性表,引申为仓库一种数据结构,只能在一端进行插入和删除操作,后进先出(LIFO)原则存储数据,push入栈,pop出栈允许插入和删除的一段为栈顶(低地址的一端),另一端为栈底同队列一样没有数据类型的界限算法:push入栈: 1.TOP++; 2.若Top原创 2016-09-01 14:11:03 · 1334 阅读 · 0 评论 -
图__最小生成树
图---最小生成树学习总结://---------------------------------------//-----根据下图----------------------------------------//--实现普里姆算法(Prim)--及--克鲁斯卡尔算法(kruskal)--------------- /* A原创 2016-09-12 09:52:21 · 898 阅读 · 0 评论 -
数据结构——环形队列的原理(模拟环形队列)
数据结构——环形队列的原理(模拟环形队列)知识点简要介绍:队列:一种特殊的线性表,包含队列头、队列尾,只允许在队列头进行删除操作,在队列为进行删除操作分类: 顺序队列、循环队列(环形队列)顺序队列: 在内存中是一段连续的存储空间,并有队列头指针和队列尾指针,打个比喻吧: 顺序队列就像在排队买车票,排在最前面(第一个人)的就是队头,排在最后的就是队尾,第原创 2016-08-31 12:46:49 · 10905 阅读 · 0 评论 -
稀疏矩阵的三元组表与十字链表存储
三元组表和十字链表存储稀疏矩阵,并进行矩阵的加、乘法、转置等操作三元组表:存储稀疏矩阵的非零元素,以及该元素所在的行、列信息,极大的节省了空间(如相比于一般的二维数组的存储),而且三元组表的某些算法的时间效率也要优于经典算法,如基于三元组表的一次快速转置算法等等十字链表:当要进行矩阵的加、减、乘等运算时,有时非零元素的位置会发生很大的变化,三元组表位保持以行或列序为主而大量移动元素原创 2016-11-14 13:03:06 · 15610 阅读 · 3 评论