类型:最小割
建模分析:
首先把这张图黑白染色,使得相邻格子之间的颜色不一样。
然后一种格子连源点,另一种连汇点,相邻4格子之间用inf的边连接。
由于不可以使得选出的数有公共边,也就是这个网络不可以有流。
即为最小割问题
题目链接:
Ac Code:
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#define il inline
using namespace std;
const int inf=0x7fffffff;
const int maxm=110000;
int head[maxm],to[maxm*2],cap[maxm*2],net[maxm*2],deep[maxm],cnt=1;
il void add(int x,int y,int c){cnt++,to[cnt]=y,cap[cnt]=c,net[cnt]=head[x],head[x]=cnt;}
queue <int> dl;
int vis[maxm],id[200][200];
il bool BFS(int s,int t)
{
while(!dl.empty()) dl.pop();
memset(deep,-1,sizeof(deep));
dl.push(s),deep[s]=0;
while(!dl.empty())
{
int x=dl.front();dl.pop();
for(int i=head[x];i;i=net[i])
if(cap[i]>0&&deep[to[i]]==-1)
dl.push(to[i]),deep[to[i]]=deep[x]+1;
}
return deep[t]==-1?0:1;
}
int dfs(int now,int flow,int t)
{
if(now==t) return flow;
int w,used=0;
for(int i=head[now];i;i=net[i])
{
int v=to[i];
if(deep[v]==deep[now]+1&&cap[i])
{
w=dfs(v,min(flow-used,cap[i]),t);
cap[i]-=w;
cap[i^1]+=w;
used+=w;
if(used==flow) return flow;
}
}
if(!used) deep[now]=-1;
return used;
}
il int dinic(int s,int t)
{
int maxflow=0;
while(BFS(s,t)) maxflow+=dfs(s,inf,t);
return maxflow;
}
inline void adx(int x,int y,int cax)
{
add(x,y,cax),add(y,x,0);
}
il int read()
{
int x=0,w=1;
char ch=0;
while(ch<'0'||ch>'9')
{
if(ch=='-') w=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int main()
{
//freopen("grid.in","r",stdin);
//freopen("grid.out","w",stdout);
int n=read(),m=read();
int s=0,t=n*m+3,sum=0;
int num=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
id[i][j]=++num;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int c=read();
sum+=c;
if((i+j)%2)
{
adx(s,id[i][j],c);
if(i-1>=1) adx(id[i][j],id[i-1][j],inf);
if(i+1<=n) adx(id[i][j],id[i+1][j],inf);
if(j-1>=1) adx(id[i][j],id[i][j-1],inf);
if(j+1<=m) adx(id[i][j],id[i][j+1],inf);
}
else adx(id[i][j],t,c);
}
return printf("%d\n",sum-dinic(s,t))*0;
}