Havel定理及其应用

Given a list of n natural numbers d1, d2,...,dn, show how to decide in polynomial time whether there exists an undirected graph G = (V; E) whose node degrees are precisely the numbers d1,d2,..., dn. G should not contain multiple edges between the same pair of nodes, or"loop" edges with both endpoints equal to the same node.

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化
可图化的判定:d1+d2+……dn=0(mod 2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。
可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

判断序列S:=6,5,4,3,3,3,2,0 是否可图。

证:a. 删除首元素6,将除去第一个元素后面的6个元素减一,得到:S1 = 4,3,2,2,2,1,0

b.删除首元素4,将除去第一个元素后面的4个元素减一,得到:S2 = 2,1,1,1,1,0

c,删除首元素2,将除去第一个元素后面的2个元素减一,得到:S3 = 0,0,1,1,0

d.重新排序:S4 = 1,1,0,0,0

e.删除首元素1,将除去第一个元素后面的1个元素减一,得到:S3 = 0,0,0,0

则最后得到的是非负序列,证明 序列式可图的!


判断序列S:=7,6,4,3,3,3,2,1 是否可图。

证:a. 删除首元素7,将除去第一个元素后面的7个元素减一,得到:S1 = 6,3,2,2,2,1,0

b.删除首元素6,将除去第一个元素后面的6个元素减一,得到:S2 = 2,1,1,1,0,-1

最后得到的是存在负数的序列,证明 序列式不可图的!



代码:

booble Algorithm(int arr[]){
    for(i=0;i<arr.length;i++){
        sort(arr+i,arr+arr.length);//将数组的第i项到最后一项排序
        for(j=i+1;j<arr.length;j++){
            arr[j]--;
        }
        if(arr[arr.length-1!=0]) return false;
    }
    return ture;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值