关闭

HDU-4460(bfs搜索)

标签: bfs
71人阅读 评论(0) 收藏 举报
分类:

题目大意:

有n个人,m个关系,A认识B经过最少的人数为A到B的关系长度,问在这n个人中,任意两个人相互认识的最长关系长度为多少。如果有两个人无法通过关系认识则输出-1。

换句话解释题意就是说求最短路的最大值(相邻两点的距离为1),数据范围是点数 1000 ,边数20000, 难道要求所有点之间的最短路再求最大值, O(n^3) 有点大。

怎么办呢? 其实是可以优化的,从一个源点用BFS一圈一圈地向外扩展,最短路即圈数,复杂度是O(n),比dijkstra或SPFA都要好,其次,如果图不是联通的,那么答案肯定的INF,直接输出。 这样整体最坏情况是O(n^2) ,能AC.

最短路的bfs队列实现,很不错的一个题,

AC代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <set>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
vector<int>q[1000+10];
int vis[1000+10];
bool flag;
int ans;
void bfs(int x)
{
    if(flag)
        return ;
    queue<int>du;
    memset(vis,-1,sizeof(vis));
    du.push(x);
    vis[x]=0;
    while(!du.empty())
    {
        int y=du.front();
        du.pop();
        if(vis[y]>ans)
        {
            ans=vis[y];
            if(ans>6)
            {
                flag=true;
                return ;
            }
        }
        for(int i=0;i<q[y].size();i++)
        {
            if(vis[q[y][i]]==-1)
            {
                vis[q[y][i]]=vis[y]+1;
                du.push(q[y][i]);
            }
        }
    }
}
int main()
{
    int n;
    while(cin>>n&&n)
    {
        string x,y;
        map<string,int>p;
        for(int i=1;i<=n;i++)
        {
            cin>>x;
            p[x]=i;
        }
        int t;
        cin>>t;
        for(int i=0;i<t;i++)
        {
            cin>>x>>y;
            q[p[x]].push_back(p[y]);
            q[p[y]].push_back(p[x]);
        }
        flag=false;
        ans=0;
        for(int i=1;i<=n;i++)
        {
            bfs(i);
        }
        if(flag)
            cout<<-1<<endl;
        else
            cout<<ans<<endl;
        for(int i=0;i<1000+10;i++)
            q[i].clear();
    }
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8911次
    • 积分:761
    • 等级:
    • 排名:千里之外
    • 原创:68篇
    • 转载:2篇
    • 译文:0篇
    • 评论:3条