- 博客(61)
- 资源 (10)
- 收藏
- 关注
原创 Ubuntu2204 NVIDIA-SMI has failed because it coudln‘t communicate with the NVIDIA driver
Ubuntu更新驱动导致nvidia-smi 无法使用了
2024-12-24 10:38:29 220
原创 Marscode数字字符串格式化
Marscode 数字字符串格式化。小M在工作时遇到了一个问题,他需要将用户输入的不带千分位逗号的数字字符串转换为带千分位逗号的格式,并且保留小数部分。小M还发现,有时候输入的数字字符串前面会有无用的 0,这些也需要精简掉。请你帮助小M编写程序,完成这个任务。
2024-11-27 11:43:27 122
原创 python 中*的用处
自己经常混的用处,为此特意总结记录。在Python中,函数定义中的(星号)用于指示位置参数的结束和关键字参数的开始。具体来说,之后的参数必须以关键字参数的形式传递。
2024-10-17 19:11:49 360
原创 [笔记] FragmentVC(2021)
任意人到任意人的VC目标是将源发音人的音色转换到目标发音人上,即便目标发音人和源发音人都是在训练时未曾出现的发音人。这是相比一对一,多对多更具有挑战的任务,而这也在现实场景中更加吸引我们,因为这个情况更加常见。在这个论文中作者团队提出了FragmentVC。使用Wav2Vec 2.0从源发音人语句中隐式提取音素结构。目标发音人的语谱特征使用log 梅尔谱。通过一个二阶段训练过程,可以将两个不同的特征空间中的隐式结构对齐。FragmentVC能够从目标发音人中提取细粒度的语音片段,然后将它们融合进期望的语音。
2022-11-01 15:26:24 668
原创 《格局》读书笔记
《格局》 读书笔记Writer: 吴军Date: 2022.4.29一直比较喜欢吴军的书,能有一些收获。这次记录这本书给我带来的启发和知识。前言读完前言,对其中一些内容印象深刻。成功的人他们都十分清楚自己所在的位置,有非常明确的方向,然后用正确的方法沿着这个方向坚定地走下去。他们并不企图步伐有多大,但是因为从来不去做(或很少做)南辕北辙的事情,反而总是先人一步到达终点。相反,一事无成的人常常跑得很快,却在锲而不舍地兜圈子,或者受到环境的诱惑而不断改变方向,甚至干脆背道而驰,几年、十几年后回
2022-05-18 22:28:27 1155
原创 使用Ngram融合多个语言模型
Ngram功能用于多个语言模型之间插值合并,以期望改善模型的效果模型插值参数:-mix-lm 用于插值的第二个ngram模型,-lm是第一个ngram模型-lambda 主模型(-lm对应模型)的插值比例,0~1,默认是0.5-mix-lm2 用于插值的第三个模型-mix-lambda2 用于插值的第二个模型(-mix-lm对应的模型)的比例,那么第二个模型的比例为1-lambda-mix-lambda2-vocab 当两个模型的词典不一样的时候,使用该参数限制词典列表,没有效果-limit
2022-05-12 09:28:20 798
原创 【Leetcode】求和问题专题
【Leetcode】求和问题专题Author: Xin PanDate: 2022.4.27文章目录【Leetcode】求和问题专题【1】两数之和解析我的答案【167】两数之和 II - 输入有序数组解析我的答案【15】三数之和解析答案【18】四数之和解析答案这次总结一类问题即求和问题的解法。包括如下具体题目:两数之和两数之和2-输入有序数组三数之和四数之和接下来开始正文内容。【1】两数之和输入: 输入的是一个非排序的数组nums,和一个目标值target。输出:和为targe
2022-04-27 10:29:57 255
原创 【Leetcode】[977] 有序数组的平方
【Leetcode】[977] 有序数组的平方Author: Xin PanDate: 2022.3.2题目原题链接给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。解法由于题目输入是排序的数组。这个时候可以考虑使用双指针技巧来解题。答案1执行用时: 20 ms 内存消耗: 26.4 MBclass Solution{public: vector<int> sortedSquares(vector&
2022-03-02 17:56:48 296
原创 《黑天鹅》读书笔记
《黑天鹅》–如何应对不可预知的未来Writer:纳西姆·尼古拉斯·塔勒布Date: 2021.12.23黑天鹅其实最早来自澳大利亚发现的黑天鹅,在那之前人们认为天鹅都是白色的。黑天鹅指满足如下三个特点的事件:意外性,指时间的发生通常在预期之外,更具体来说是指没有任何能确定它发生的证据出现;产生极端影响;事后可解释性,虽然事件具有意外性,但是人们习惯于在事情发生之后为它的发生编造(或者说找)理由,使它变得可以解释和可以预测。而有意思的地方在于黑天鹅的逻辑是说,这个我们不知道的事比现在已经
2022-01-16 22:12:44 687
原创 Transformer怎么处理语音和文本Embedding维度失衡问题
transformer怎么处理语音和文本embeding维度失衡问题Author: Xin PanDate: 2021.10.28想起之前的一个问题,在语音识别中其实一个很明显的问题就是输入音频提了特征(Feat)以后维度会比较高,但是文本因为就那么些字,维度会比较少。那么它们之前在decoder上是如何产生关联关系的呢?假设现在的特征是Feat=[152,2,512]=[特征长度,batch,特征深度],文本的tgt=[60,2,512]=[文本长度,batch,特征深度]乍看它们的维度不一样
2021-11-01 15:28:02 1122
原创 Self-attention中为什么softmax要除d_k
我觉得这是一个很有意思的问题,简单但是很细节。先说结论,是为了保证梯度的平稳。那怎么个意思?首先说向量(行向量和列向量都一样),他们的点乘和叉乘。向量的内积:也叫点乘,结果是一个数。两个向量对应位相乘再求和。要求向量a和b的维度要一样。a⃗∗b⃗=(a1∗b1+a2∗b2+⋯+an∗bn)\vec{a}*\vec{b}=(a_1*b_1+a_2*b_2+\cdots+a_n*b_n)a∗b=(a1∗b1+a2∗b2+⋯+an∗bn)内积的几何意义:计算两个向量之间的夹角或者向量b在向
2021-10-14 10:34:00 3562 6
原创 《考试脑科学》读书笔记
读书笔记:考试脑科学Writer:池谷裕二(日本)Date:2021.9.25这本书还是挺有意思的,讲得算是脑科学吧。文章目录读书笔记:考试脑科学第一章 记忆究竟是什么第二章 “欺骗”大脑的方法第三章 海马体和LTP第四章 不可思议的睡眠第五章 模糊的大脑第六章 天才的记忆机制第一章 记忆究竟是什么人脑的记忆处理机制和计算机相似也是数字信号,因而人脑和计算机的相似点也就是都使用了二进制。人脑的记忆分为长期记忆和短期记忆,而海马体就是区分什么信息存储进长期记忆的分类员。红颜色让人畏惧恐惧,
2021-10-07 18:36:42 2052
原创 《年轻人自救指南》读书笔记
读书笔记:年轻人自救指南Writer: 蔡澜Date: 2021.8.15年轻时总要吃点苦的谈到未来,年轻人医不好的就是没有自信但是还不肯上进,不肯努力本身极为平凡,收到比人的吹捧,没有胆量享受不符的成就。人生最大的投资莫过于培养自己本行之外的兴趣,专心研究称为副业。所谓狡兔三窟亦是如此。人在社会中活着,必然要钱。但是气焰也是需要的,气焰要内藏不应表露。年轻人没有了气焰就像是老人(也许摘录下作者这段话的我现在就像是老人,但是我已经在改变了),如果他们把愤怒化为了力量,才能学到嬉皮士的精神。学
2021-09-02 00:35:26 155
原创 【笔记】Small-footprint Keyword Spotting Using Deep Neural Networks
SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKSDate: 2021.8.17Author: Xin Pan摘要我们的应用需要一个KWS系统,这个系统需要满足这些条件。内存占用小,计算消耗小,高精度。为了满足这些条件,我们提出了一个基于DNN的方法。训练一个直接预测关键词或者关键词字词单元的DNN,后边接一个后验概率处理方法产生最终的置信度得分。对比传统的HMM系统,该系统达到45%相对的性能提升,同时在babble噪声下达到3
2021-08-18 15:11:48 978 7
原创 [笔记] CTC阅读个人总结
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural NetworksDate :2021.04.21Author: Xin Pan背景CTC是ICML2016年的论文今天依旧在被使用,而我一致也没有读过使用过,正巧现在想系统阅读下这些论文就记录下自己的收获。讲真的这个论文是够难懂的,很多的内容第一次读完之后真的没有理解。但是之前看过HMM(隐马尔科夫模型)
2021-04-29 16:32:51 1149
原创 Beam search 以及在语音识别(pure E2E)中的使用
Beam search 以及在语音识别(pure E2E)中的使用Author: Xin PanDate: 2021.2.22语音识别(ASR)中解码时一个很重要的过程。在其中不论是传统语音识别或是E2E的新结构虽然LM也许不存在了,但是解码过程和其中的解码方法是必不可少的。首先简单说下beam search,之后说下ASR E2E+without LM这种方式中beam search如何使用的。Beam SearchBeam search是介于穷举搜索和贪心搜索之间的一种搜索算法。穷举搜索
2021-03-03 11:00:32 980
原创 [kaldi]如何freeze 某个Layer并微调其余的网络
[kaldi]如何freeze 某个Layer并微调其余的网络Author: Xin PanDate: 2020.12.21最近因为工作的需要,尝试对网络的一些layer进行freeze 并fine-tune余下的部分网络。需要的文件一个已经训练好的final.mdl文件。这是必须的如何微调使用nnet3-copy --binary=false <input_file> <output_file>将final.mdl文件转换为文本格式;我之前已经有一个fin
2020-12-21 11:59:12 682 4
原创 git 如何不push超大的文件
[Git] 如何不push超大的文件Author: Xin PanDate: 2020.12.10如果超大的文件还没有被commit 进local_repo:git add .以后写.gitignore或者.git/info/exclude完成路径的隔离或者说忽略。再去commit 之后push如果超大的文件还已经被commit 进local_repo:那么使用如下命令git filter-branch -f --prune-empty --index-filter 'git rm -r
2020-12-10 19:05:28 878
原创 [自己记录] 如何阅读一篇论文
如何阅读一篇论文Author: Xin PanDate: 2020.09.18最近两天在看如何阅读好一篇论文。四处搜集资料现在也自己有了一些想法。我为什么要去思考这个问题?因为我想从一篇论文中收获更多,把一篇论文理解更透彻,知道作者的提出解决方案的思路。除此以外知道还可以做些什么,创新。第一个就是沈向阳:读论文的三个层次“或许你永远不知道你以前读过的书能在什么时候能够派上用场,但请保持阅读,因为阅读的过程也是在你大脑中建立认知的过程。”读论文时提取中心思想就像“从针眼里边吸出一头骆驼”。如何
2020-10-20 14:46:50 415 2
原创 [kaldi]如何微调模型
kaldi 如何微调模型Author : Xin PanDate: 2020.07.22在已经有了一个模型的基础上如何去微调一个模型?需要的文件基础模型文件夹A(需要包含final.mdl以及tree,除此以外还需要ali.*.gz文件);data文件夹以及保存特征的文件夹;新模型文件夹B(需要包含final.mdl以及tree);exp/tri4_lat那么需要做哪些更改?首先需要下边的额外步骤;local/chain/run_tdnn.sh stage=10;train.
2020-07-31 17:32:30 1108 4
原创 [Linux] sed的一些功能
sed -e ‘/.det/d’ wav.scp >wav.scpnew删除wav.scp中含".det"的行,但不改wav.scp文件本身,结果重定向到wav.scpnew
2020-06-12 18:02:31 325
原创 [Linux] awk 切分字符
cat wav.scp |awk ‘{print $1}’|awk ‘BEGIN{FS="[_]+"}{print $0" "$1}’>utt2spkG0002_DTM1_050_ahead_000_G0002_S1001_MDM16 /home/panxin/kaldi/egs/ami/s5/wav_db/wav/beamformed/G0002_DTM1_050_ahead_000_G0002_S1001_MDM16.wavG0002_DTM1_050_ahead_000_G0002_S10
2020-06-12 16:58:19 805
原创 [Torch]Torch tensor与numpy互相转换
Torch tensor与numpy互相转换Author: Xin PanDate: 2020.06.07实验环境torch=1.5.0 +python=3.5.3 +numpy=1.14.6numpy转tensornumpy_data = np.arange(6).reshape((2, 3))torch_data = torch.from_numpy(numpy_data)#输出 [[0 1 2] [3 4 5]] tensor([[0, 1, 2],
2020-06-07 22:14:06 3214 2
原创 [Torch]Pytorch下载慢怎么办?
Pytorch下载慢怎么办?Author: Xin PanDate: 2020.06.07问题使用pip安装torch的经常速度很慢?我们一般安装torch如果用pip的话会访问这里。如下所示使用图里的命令:但是速度经常很慢,我这的速度已经是10Kb/s了。解决访问这个网站,我们会看到类似下边的界面:这里我们可以下载torch和torchvision的whl文件。命名规则是这样的:cpu/torch-1.5.0-cp27-none-macosx_10_7_x86_64.whlcpu
2020-06-07 18:48:03 2571
en_us_cmudict_forward.pt
2022-05-10
unzip-6.0-21.el7.x86_64.rpm
2020-05-13
adult.data
2020-01-02
影像匹配VC++程序_改进
2016-09-30
影像匹配VC程序
2016-09-26
影像匹配VC++程序
2016-09-25
基于遗传算法的多旅行商问题Matlab
2016-09-17
VS2010_Uninstall-RTM
2015-08-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人