Light OJ-1082 Array Queries(线段树最值查询)

原创 2017年08月01日 15:41:39

Given an array with N elements, indexed from 1 to N. Now you will be given some queries in the form I J, your task is to find the minimum value from index I to J.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 105)q (1 ≤ q ≤ 50000). The next line contains N space separated integers forming the array. There integers range in [0, 105].

The next q lines will contain a query which is in the form I J (1 ≤ I ≤ J ≤ N).

Output

For each test case, print the case number in a single line. Then for each query you have to print a line containing the minimum value between index I and J.

Sample Input

2

 

5 3

78 1 22 12 3

1 2

3 5

4 4

 

1 1

10

1 1

Sample Output

Case 1:

1

3

12

Case 2:

10

Hint

Dataset is huge. Use faster I/O methods.

题解:

很水的区间最小值查询。。就不写题解了

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<math.h>
#include<string>
#include<stdio.h>
#include<queue>
#include<stack>
#include<map>
#include<deque>
using namespace std;
struct node
{
    int l,r;
    int minn;
}t[100005*4];
void Build(int l,int r,int k)
{
    t[k].l=l;
    t[k].r=r;
    if(l==r)
    {
        scanf("%d",&t[k].minn);
        return;
    }
    int mid=(l+r)/2;
    Build(l,mid,k*2);
    Build(mid+1,r,k*2+1);
    t[k].minn=min(t[k*2].minn,t[k*2+1].minn);
}
int query(int l,int r,int k)
{
    if(t[k].l==l&&t[k].r==r)
    {
        return t[k].minn;
    }
    int mid=(t[k].l+t[k].r)/2;
    if(r<=mid)
        return query(l,r,k*2);
    else if(l>mid)
        return query(l,r,k*2+1);
    else
    {
        return min(query(l,mid,k*2),query(mid+1,r,k*2+1));
    }
}
int main()
{
    int i,j,k,test,n,m,x,y,q;
    scanf("%d",&test);
    for(q=1;q<=test;q++)
    {
        scanf("%d%d",&n,&m);
        Build(1,n,1);
        printf("Case %d:\n",q);
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            printf("%d\n",query(x,y,1));
        }
    }
    return 0;
}



版权声明:欢迎转载,转载请注明原博客网址

相关文章推荐

Light OJ-1082 - Array Queries,线段树区间查询最大值

1082 - Array Queries Time Limit: 3 second(s) Memory Limit: 64 MB Given an array with N ele...

LightOJ 1082 - Array Queries【线段树最值】

题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1082一水~代码:#include #include #include ...

LightOJ Array Queries 1082【线段树求区间最值】

1082 - Array Queries PDF (English) Statistics Forum Time Limit: 3 se...
  • ydd97
  • ydd97
  • 2015年08月20日 22:00
  • 1064

【CodeForces】266E More Queries to Array... 线段树

E. More Queries to Array... time limit per test 5 seconds memory limit per test 256 megabyte...

zkw线段树,区间修改,最值查询(差分)

#include #include #include #include #include #include #include using namespace std; const int N=5001...

Codeforces 272C Dima and Staircase 线段树区间覆盖,最值查询

传送门:点击打开链接 C. Dima and Staircase time limit per test 2 seconds memory limit per test 256 megaby...

I Hate It (HDU - 1754) (线段树的点更新-最值查询)

I Hate It (HDU - 1754) 很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。 这让很多学生很反感。 不管你喜不喜欢,现在需要你做的是,就是按照老师...

(一)线段树入门--区间最值查询

线段树 描述 区间最值查询问题 模板 一棵看上去很唬人的树 一些比较酷的操作 这是一篇入门文章,不过需要你知道啥是二叉树,并且知道递归,本文会持续更新,时间看作者心情。 线段树描述分类:二叉树搜索...

快速查询区间最值——RMQ算法(线段树实现代码)

要求找出区间内的最大最小值的差。#include #include #include #define lson l,m,p

线段树基础:单点更新,区间最值(和)查询

线段树基础:单点更新,区间最值查询
  • ACGoxy
  • ACGoxy
  • 2017年07月31日 09:42
  • 152
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Light OJ-1082 Array Queries(线段树最值查询)
举报原因:
原因补充:

(最多只允许输入30个字)