light oj 1082 - Array Queries【线段树】最简单的查询最值

1082 - Array Queries
Time Limit: 3 second(s)Memory Limit: 64 MB

Given an array with N elements, indexed from 1 to N. Now you will be given some queries in the form I J, your task is to find the minimum value from index I to J.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 105)q (1 ≤ q ≤ 50000). The next line contains N space separated integers forming the array. There integers range in [0, 105].

The next q lines will contain a query which is in the form I J (1 ≤ I ≤ J ≤ N).

Output

For each test case, print the case number in a single line. Then for each query you have to print a line containing the minimum value between index I and J.

Sample Input

Output for Sample Input

2

 

5 3

78 1 22 12 3

1 2

3 5

4 4

 

1 1

10

1 1

Case 1:

1

3

12

Case 2:

10

Note

Dataset is huge. Use faster I/O methods.


最简单的线段树实现区间查询.....

努力学!


#include<stdio.h>
#define maxn 0x3f3f3f3f
#include<algorithm>
using namespace std;
int mintree[400005];
void build(int rt,int l,int r)
{
	if(l==r)
	{
		scanf("%d",&mintree[rt]);
		return;
	} 
	int mid=(l+r)>>1,tp=rt<<1;
	build(tp,l,mid);build(tp|1,mid+1,r);
	mintree[rt]=min(mintree[tp],mintree[tp|1]);
}
int find(int rt,int l,int r,int a,int b)
{
	if(l>=a&&r<=b)
	{
		return mintree[rt];
	}
	int mid=(l+r)>>1,tp=rt<<1,ret=maxn;
	if(mid>=a)
	{
		ret=min(find(tp,l,mid,a,b),ret);
	}
	if(mid<b)
	{
		ret=min(find(tp|1,mid+1,r,a,b),ret);
	}
	return ret;
}

int main()
{
	int t,n,m;
	//freopen("shuju.txt","r",stdin);
	scanf("%d",&t);
	for(int k=1;k<=t;++k)
	{
		printf("Case %d:\n",k);
		scanf("%d%d",&n,&m);
		build(1,1,n);
		while(m--)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			printf("%d\n",find(1,1,n,a,b));
		}
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值