基本思想
ChiMerge 是监督的、自底向上的(即基于合并的)数据离散化方法。它依赖于卡方检验:具有最小卡方值的相邻区间合并在一起,直到满足确定的停止准则。
基本思想:对于精确的离散化,相对类频率在一个区间内应当完全一致。因此,如果两个相邻的区间具有非常类似的类分布,则这两个区间可以合并;否则,它们应当保持分开。而低卡方值表明它们具有相似的类分布。
参考
参考:
1. ChiMerge:Discretization of numeric attributs
2. Chi算法
要点
1、 最简单的离散算法是: 等宽区间。 从最小值到最大值之间,,均分为 N 等份, 这样, 如果
2、 还有一种简单算法,等频区间。区间的边界值要经过选择,使得每个区间包含大致相等的实例数量。比如说 N=10 ,每个区间应该包含大约10%的实例。
3、 以上两种算法有弊端:比如,等宽区间划分,划分为5区间,最高工资为50000,则所有工资低于10000的人都被划分到同一区间。等频区间可能正好相反,所有工资高于50000的人都会被划分到50000这一区间中。这两种算法都忽略了实例所属的类型,落在正确区间里的偶然性很大。
4、 C4、CART、PVM 算法在离散属性时会考虑类信息,但是是在算法实施的过程中间,而不是在预处理阶段。例如, C4 算法(ID3决策树系列的一种),将数值属性离散为两个区间,而取这两个区间时,该属性的信息增益是最大的。
5、 评价一个离散算法是否有效很难,因为不知道什么是最高效的分类。
6、 离散化的主要目的是:消除数值属性以及为数值属性定义准确的类别。
7、 高质量的离散化应该是:区间内一致,区间之间区分明显。
8、 ChiMerge 算法用卡方统计量来决定相邻区间是否一致或者是否区别明显。如果经过验证,类别属性独立于其中一个区间,则这个区间就要被合并。
9、 ChiMerge算法包括2部分:1、初始化,2、自底向上合并,当满足停止条件的时候,区间合并停止。
步骤
第一步:初始化
根据要离散的属性对实例进行排序:每个实例属于一个区间
第二步:合并区间,又包括两步骤
(1) 计算每一对相邻区间的卡方值
(2) 将卡方值最小的一对区间合并
预先设定一个卡方的阈值,在阈值之下的区间都合并,阈值之上的区间保持分区间。
卡方的计算公式:
χ2=∑mi=1∑k