- 博客(636)
- 资源 (1)
- 收藏
- 关注
原创 基于K-Means鸢尾花分类
集成学习的单个模型之间期望尽可能相互独立,即尽量低关联,实际数据很难做到这一点。Bagging分类器通过抽样的方法建立若干个不尽相同的子集,每个子集通过指定的个人学习器训练出一个元估计器,把这些估计器的预测结果结合起来形成最终的预测结果。K-Means聚类算法(k-means clustering algorithm,k均值聚类算法)是聚类业务中应用广泛又非常好理解的一种迭代求解的聚类分析算法。
2024-07-08 23:53:38 1038
原创 Boosting应用
Boosting集成学习的过程不能并行,它的计算过程会先从原始样本集中训练出一个个体学习器,然后对该学习器中做错的训练样本进行关注,通过改变训练样本权重,依次学习多个分类器并进行一些线性组合,达到将原本较弱的个体学习器提升为强学习器的目的。在Boosting家族中,比较有代表性的算法有Adaboost、XGBoost 等。其中Adaboost从弱分类器出发反复训练,在其中不断调整数据权重或者是概率分布,同时提高前一轮被弱分类器误分的样本的权值。XGBoost 是一种提升树模型,将许多树模型集成在一起,形
2024-07-08 23:14:23 993
原创 随机森林回归与分类
个体决策树学习器通常具有高方差、容易过拟合的特点,与决策树的深度有关。随机森林集成学习构建通过有放回的抽取样,每次随机抽取一定数量的特征,构建过程中随机性能够产生具有不同预测错误的决策树,通过取这些决策树的平均,能够消除部分错误,降低方差,通常比决策树有更理想的学习效果。随机森林改变了决策树容易过拟合的问题,即可以学习分类问题,也可以学习回归的问题。例如在学习分类时,采用Bagging投票的方式选择类别频次最高的,学习回归问题时,可直接取每颗树结果的平均值。在scikit-learn工具的实现过程中,取的是
2024-07-08 23:04:37 974
原创 基于kNN学习器Bagging应用
集成学习的单个模型之间期望尽可能相互独立,即尽量低关联,实际数据很难做到这一点。Bagging分类器通过抽样的方法建立若干个不尽相同的子集,每个子集通过指定的个人学习器训练出一个元估计器,把这些估计器的预测结果结合起来形成最终的预测结果。Bagging每次采样的样本在下次采样前都会放回初始数据集中,这样保证了每次采样都是从初始数据集的全样本中随机抽取,每次抽取都会生成一个新的样本集,样本集间会出现重叠的数据描述样本的信息知识。然后每个新的样本集基于指定的个体学习器进行训练,生成一个估计器,所有样本的估计器
2024-07-08 22:23:25 918
原创 半导体制造过程信息传递判定
本次数据为半导体制造工艺数据集,目标为训练一个可以智能监测半导体制造过程的分类模型,评估传感器内部线测试是否顺利通过(二值分类问题),并在测试数据集上尝试获得最优结果。数据集(具体数据信息详见教材配套代码)由2个文件(train.csv、test.csv)组成,其中训练数据集文件(train.csv)内含1253个样本组成,每个样本包含591个特征和1个标签(1253*592矩阵),测试数据集文件(test.csv)内含314个样本,每个样本包含591个特征(314*591矩阵)。分类测试数据文件(labe
2024-07-08 20:55:26 831
原创 基于SVM手写数字识别技术
本节实验采用UCI开放的手写数字数据,应用SVM技术,实现手写数字识别的功能。数据源于NIST提供的预处理程序,目标是从预印表格中提取手写数字的归一化位图。在总共43个人中,有30个人参与了培训,而有13个人参与了测试。将32x32位图划分为4x4的非重叠块,并在每个块中计数打开像素的数量。最终,生成8x8的输入矩阵,其中每个元素都是0到16范围内的整数,这降低了尺寸并且恒等产生了小的变形。
2024-07-08 20:36:50 1045
原创 邮件MultinomialNB分类
通过邮件与人进行私人或工作上的交流是一件方便、快捷令人开心的事情,例如学习上的交流邮件,我们称之为正常邮件。本案例应用normal-train1.txt和normal-train2.txt共计2封测试邮件进行正常邮件的样例描述。
2024-07-08 20:12:59 877
原创 波士顿房价决策树回归
本节实验采用UCI开放出来的用于机器学习算法的经验分析的数据库中的波士顿房价数据,对数据进行可视化分析,依据线性模型特点,对数据进行降维处理,对数据进行多项式生成,完成波士顿房价的线性回归预测。
2024-07-08 14:49:55 845
原创 茑尾花决策树分类
分类树是一种描述对实例进行分类的树形结构。在使用分类树进行分类时,从根结点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子结点。这时,每一个子结点对应着该特征的一个取值。如此递归地对实例进行测试并分配,直至达到叶结点,最后将实例分到叶结点的类中。
2024-07-08 14:37:34 790
原创 茑尾花逻辑回归分类
逻辑回归也可称为对数回归、对数线性分类器等名称,在回归中它最大的特点是可以用于分类的建模。在这个模型中,可应用Logistic函数对描述单个试验可能的结果的概率进行建模。在Sklearn工具中,LogisticRegression和LogisticRegressionCV是常用的方法,其主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证,以及选择正则化系数C以外,LogisticRegres
2024-07-08 14:04:05 349
原创 波士顿房价线性回归预测
线性回归算法是使用线性方程对数据集进行拟合的算法,是一个非常常见的回归算法。应用场景较广泛,例如同一平台不同坐标系间数据对应转换、大地坐标与经纬坐标转换、医院病床数与病患间的关系等等。在回归中,也可以通过对回归的数据打离散的标签实现分类的问题。本章首先从最简单的单变量线性回归算法开始,应用一个广告投放与销售量的案例,探讨线性回归的基本理论、实现方法、评估方法与常见的欠拟合和多重线性问题。然后通过波士顿房价预测进行案例演示。最后会通过逻辑回归分析鸢尾花分类与模型的性能指标分析,展示回归分类求解的过程。
2024-07-08 13:53:39 1091
原创 K近邻算法实现葡萄酒分类
k近邻(k-nearest neighbor,kNN)算法(以下简称kNN),依据待测样本与所在的特征空间的样本距离,计算出距离测试样本最邻近的k个样本,依此判定测试样本属于某类,或用于简单的回归计算。kNN原理简单,理论成熟,是实践最广泛的机器学习算法之一。本节将由它来演示机器学习的基本过程,以此揭开看似神秘的机器学习这门学科的真貌。
2024-07-08 12:59:47 1028
原创 lnmt架构的搭建与应用
在提供web网络服务的互联网公司中,每个公司都有自己的web网络架构,Web架构就是为了实现Web系统的高效连接而采取的方法。Web系统架构是灵活的,根据需求决定,如一些系统访问量不大,并且可能只有一台服务器存在,就不需要运用负载均衡层。而如果访问量特别大那么可能仅仅添加负载均衡层还是不够的,就需要增加CND,MySQL主从,读写分离等手段。
2024-07-06 11:47:21 819
原创 shell脚本进阶
在自动化运维中shell脚本的编写是不可或缺的,生产过程中,可能会遇到各种各样的环境,也就需要编写出不同需求的脚本,只有在学习时掌握全面的shell编程语法才能在复杂环境下从容应对。
2024-07-06 11:22:24 705
原创 shell脚本基础
在日常工作中即使最谨慎的人,也会犯错,尤其是面对着大量重复性的工作。通过脚本来完成这样的工作,可以把错误率大大降低,同时也可以极大的减少人工成本。
2024-07-06 11:06:52 763
原创 ftp服务应用
几乎每个企业都使用过或仍正在使用文件传输协议(FTP)来实现文档的传输,通过FTP文件服务器,可以实现让局域网用户共同使用单位的共享文件,便于大家协同工作。同时,员工的工作成果、单位的无形资产和商业机密信息存储在FTP文件服务器上也相对更为安全。
2024-07-06 09:39:18 740
原创 apache服务应用
Apache HTTP Server(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以在大多数计算机操作系统中运行,由于其多平台和安全性被广泛使用,是最流行的Web服务器端软件之一。它快速、可靠并且可通过简单的API扩展,将Perl/Python等解释器编译到服务器中。 Apache HTTP服务器是一个模块化的服务器,源于NCSAhttpd服务器,经过多次修改,成为世界使用排名第一的Web服务器软件。它可以运行在几乎所有广泛使用的计算机平台上。
2024-07-05 22:34:57 853
原创 Linux--备份与恢复
我们可以有很多种办法去备份系统或文件,之所以要去做备份,就是为了在系统或文件遭到损害时,能及时恢复,把损失减小到最小。所以备份对于企业服务器而言,其重要性更是举足轻重。
2024-07-05 22:16:04 796
原创 Linux--日志管理
日志不仅在日常操作中可以帮助迅速排错,也可以快速的定位问题所在,所以在日常服务器运维过程中,对于日志整理是必不可少的,不仅要学会看日志,更要学会日志的管理。
2024-07-05 20:48:49 979
原创 Linux--定时计划任务
在Linux操作系统中,除了用户即时执行的命令操作以外,还可以配置在指定的时间、指定的日期执行预先计划好的系统管理任务如:定期备份、定期采集监测数据等。想要完成功能就需要通过at、crontab命令进行计划任务来设置。
2024-07-05 20:37:48 765
原创 Linux--服务管理
Linux服务管理是Linux系统管理员的一个基本工作,维护linux大部分工作都是在维护服务上,所以掌握对服务有效的管理,是一项必备的技能。
2024-07-05 20:23:30 717
原创 Linux--进程管理
无论是 Linux 系统管理员还是普通用户,监视系统进程的运行情况并适时终止一些失控的进程,是每天的例行事务,有效率的进程管理才能保证一个程序平稳而高效地运行。
2024-07-05 20:12:37 892
jinyang-master.zip
2020-04-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人