解决多进程中APScheduler重复运行的问题

问题

在一个python web应用中需要定时执行一些任务,所以用了APScheduler这个库。又因为是用flask这个web框架,所以用了flask-apscheduler这个插件(本质上与直接用APScheduler一样,这里不作区分)。

在开发中直接测试运行是没有问题的,但是用gunicorn部署以后发生了重复运行的问题:

每个任务在时间到的时刻会同时执行好几遍。

注意了一下重复的数量,恰恰是gunicorn里配置的worker进程数量,显然是每个worker进程都启动了一份scheduler造成。

解决

可以想到的方案有几个:

  • --preload启动gunicorn,确保scheduler只在loader的时候创建一次
  • 另外创建一个单独的定时任务项目,单独以一个进程运行
  • 用全局锁确保scheduler只运行一次

经过实践,只有第三个方案比较好。

preload的问题:

虽然这样可以使用scheduler创建代码只执行一次,但是问题也在于它只执行一次,重新部署以后如果用kill -HUP重启gunicorn,它并不会重启,甚至整个项目都不会更新。这是preload的副作用,除非重写部署脚本,完全重启应用。

单独进程的问题:

也是因为部署麻烦,需要多一套部署方案,虽然用Docker会比较方便,但仍然不喜欢,而且同时维护两个项目也多出很多不必要的事情。

全局锁是一个较好的方案,但问题在于找一个合适的锁。

python自带的多进程多线程锁方案都需要一个共享变量来维护,但是因为worker进程是被gunicorn的主进程启动的,并不方便自己维护,所以需要一个系统级的锁。

在Stackoverflow上看到有人是用了一个socket端口来做锁实现这个方案,但是我也不喜欢这样浪费一个宝贵的端口资源。不过这倒给了我一个启发:

可以用文件锁!

于是有了这个解决方案:<

在一个Python web应用中,当使用gunicorn启动多个worker进程时,可能会遇到worker进程不退出的情况。这可能是因为每个worker进程都启动了一个scheduler。解决这个问题的方法有几个。第一种方法是使用"--preload"选项启动gunicorn,确保所有的scheduler只在主进程中启动一次,而不是在每个worker进程中启动。另外,你也可以考虑使用其他方式来实现多进程,比如使用Python多进程库或者使用分布式任务队列来管理任务。 在开发中,当使用flask进行某些操作时,如果多个用户同时访问,可能会出现报错的情况。这时可以考虑使用gunicorn来实现多进程,可以提高服务器的性能并避免多用户同时访问时的问题。使用gunicorn可以很方便地启动多个worker进程,从而增加并发处理能力。 此外,协程并发也是一种强大的方式。通过使用协程,可以在4核虚拟机上实现高达7000QPS的并发处理能力。你可以尝试对比一下Python协程和Golang协程的效率,以确定哪种方式更适合你的应用需求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [基于多进程APScheduler重复运行解决方法](https://download.csdn.net/download/weixin_38698863/14914330)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Flask+Gunicorn简单实现多进程](https://blog.csdn.net/weixin_33831535/article/details/112836783)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [#转载# Flask超高并发,Flask多进程gevent ,Flask非gunicorn gevent多进程 | C/C++程序员之家](https://blog.csdn.net/weixin_39560924/article/details/111541976)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值