怎一个“跨”字了得

本文探讨了跨平台、跨浏览器及跨终端的概念及其在前端开发中的应用。特别介绍了移动优先的概念,强调了人机交互的重要性,并对响应式设计进行了深入剖析。

        我不是做编程的,专业也不是计算机,可偏偏喜欢看这方面的书籍。而且还能看得津津有味,并自觉受益匪浅。常言道:内行看门道,外行看热闹。今天我这个门外汉在看热闹之余,也班门弄斧地来此指点江山,激昂文字,希望各位看官不要扔臭鸡蛋。

 

        本书的书名为《跨终端WEB》,看似平淡无奇,但绝对不同凡响。何以故?仅一个“跨”字,份量之大足可傲视群雄,高端、大气、上档次!“跨”字道出了海纳百川,有容乃大的博大胸怀,下面通过实例略述一二。

 

        JAVA常常以可以“跨平台”而称扬天下,“一次编译,到处运行”也确实深得人心!从此再也不用去考虑不同的硬件环境,不同的操作系统。通过编译的中间码,将代码与实际的运行环境解藕,使程序可以一路高歌,畅行无阻。如果说JAVA之“跨”跨得酣畅淋漓的话,对于前端而言,这个“跨”字就多少让人有些无奈,甚至是备受煎熬!看到这里,相信有人已经猜到我想说什么了。没错,我指的就是“跨浏览器”。前端开发最痛苦的差事,我想应该就是在不同浏览器上实现无差异化。当然大家都明白,我说的是视觉上的无差异,不可能达到真正意义上的无差异。特别是那坑爹的IE,它只管自己我行我素、特立独行,却害得众多开发人员“为伊消得人憔悴”。

 

        说完前两者,自然就该到跨终端上场了。应该说跨浏览器跨终端是有一部分重叠,但二者在概念上还是不一样的,所以分开讲述。在读此书的试读章节前,我一直认为设备终端两个词等同,作者在书上也没有完全否认这点。值得一提的是,作者进一步讲述在同一设备下可以有不同终端,让我真正分清两者的微细差别。因为网络的盛行,兼之移动端的高速发展,人们不再以单一的方式上网。移动设备的崛起让跨终端迫在眉睫,为此作者在书中专门在1.4提出移动优先的概念,并通过:移动流量暴增、聚焦业务本质、人机交互扩展三个方面分别阐述。1.4.2聚焦业务本质,在纷繁的乱象中聚焦业务本质,从而推进各种终端之“跨”。1.4.3人机交互扩展,讲述了移动设备的优越性与特殊性,那么移动设备之“跨”更多地应该是一种因物制宜的超越。此外1.5不只是响应式,这部分内容是一个亮点,用不少图示完美诠释了响应式的优点,同时也指明了其中的不足,并通过多站点、多模板、多平台几个方面进行补充阐述。

 

        本书图文并茂、有理有据。虽然提供试读的章节不多,但见微知著,通过小部分内容的试读,很有理由相信,看完全书将会满载而归,非常期待……

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练与预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值