nyoj 325 (bfs +dp)

本博客探讨了一个关于生日礼物分配的趣味数学问题,即如何将一定数量的西瓜分成两堆,使得两堆的重量之差最小,确保公平庆祝生日。通过使用01背包问题和搜索算法(如BFS)进行解决,旨在为ACM队员zb提供一种有效的方法来公平地将西瓜分给他的朋友C小加和never。
摘要由CSDN通过智能技术生成

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=325

今天是阴历七月初五,acm队员zb的生日。zb正在和C小加、never在武汉集训。他想给这两位兄弟买点什么庆祝生日,经过调查,zb发现C小加和never都很喜欢吃西瓜,而且一吃就是一堆的那种,zb立刻下定决心买了一堆西瓜。当他准备把西瓜送给C小加和never的时候,遇到了一个难题,never和C小加不在一块住,只能把西瓜分成两堆给他们,为了对每个人都公平,他想让两堆的重量之差最小。每个西瓜的重量已知,你能帮帮他么?

输入
多组测试数据(<=1500)。数据以EOF结尾
第一行输入西瓜数量N (1 ≤ N ≤ 20)
第二行有N个数,W1, …, Wn (1 ≤ Wi ≤ 10000)分别代表每个西瓜的重量
输出
输出分成两堆后的质量差
样例输入
5
5 8 13 27 14
样例输出
3
 
此题可以用两种方法解决,我一开始用的是01背包问题,先求出总和的平均值,然后用一半的体积去装西瓜,看最大能容纳多少,然后total减去2倍的一半体积背包最大容纳的西瓜,即可得出解,但超时了~~~

#include<iostream> #include<stdio.h> #include<string.h> using namespace std; int w[2000],f[2000][2000],n; int Solve(int); int main() {  int i,sum,average,temp;  while(scanf("%d",&n))  {     average=sum=0;     for(i=1;i<=n;i++)     {    scanf("%d",&w[i]);          sum=sum+w[i];     }     average=sum/2;     temp=Solve(average);     printf("%d\n",sum-2*temp);  }  //system("pause");  return 0; }

int Solve(int average ) {  int i,j;  for(i=1;i<=n;i++)  for(j=1;j<=average;j++)  {   if(j>=w[i])   {    f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+w[i]); //01背包动态方程   }   else   f[i][j]=f[i-1][j];  }  return f[n][average]; }

2,第二种方法便是搜索,bfs,在搜索过程中求生两种之差,用绝对值保存,最后输出最小值即可。

#include<stdio.h>
#include<math.h>
#include<iostream>
#include<string.h>
using namespace std;
int w[25],total,n;
int m;
void dfs(int,int);
int main()
{
    int i;
 while(scanf("%d",&n)!=EOF)
 {
   total=0;
   m=20001;
   for(i=0;i<n;++i)
   {
   scanf("%d",&w[i]);
   total=total+w[i];
   }
   dfs(0,0);
   printf("%d\n",m);
 }
// system("pause");
  
}

void dfs(int cur,int sum)
{
 if(cur==n) return;
 int t;
 t=(int)(fabs(total-2*sum));
 if(t<m)
 m=t;
 dfs(cur+1,sum+w[cur]);
 dfs(cur+1,sum);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值