【BZOJ 2179】【FFT模板】 FFT快速傅立叶

2179: FFT快速傅立叶

Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1595 Solved: 792
[Submit][Status][Discuss]
Description

给出两个n位10进制整数x和y,你需要计算x*y。
Input

第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
Output

输出一行,即x*y的结果。
Sample Input

1

3

4

Sample Output

12

数据范围:

n<=60000

FFT模板题。

直接进行高精度乘法是 O(n2) 的,于是我们采用FFT来 O(nlogn) 实现:
(注明:以下着重介绍算法流程和算法思想,具体细节参考《算法导论》)

1.我们把乘数的每一位看作多项式的系数,得到多项式 A(x) (因为高精度乘法的本质就是多项式乘法)

2.首先求出 A(ωkn) ,其中 k[0,n1] ωn 是n次单位复根。
由于n次单位复根的一些奇妙性质:
相消引理
这里写图片描述
折半引理
这里写图片描述
我们可以采用分治 O(nlogn) 的时间求出这 n 项的值,但是递归实现常数较大,我们采用蝴蝶算法来迭代实现。
这里写图片描述
如图,把原来顺次排列的数列变成叶子中的顺序就可以迭代了~
(叶子中的顺序就是原序列的二进制逆序)

3.(这一步叫插值
如下图,
ai表示多项式的系数;
ωkn 就是我们带入多项式的值:
第一个多项式 x=ω0n ,第二个是 x=ω1n ,第三个是 x=ω2n ….知道第n个是 x=ωn1n
yi 就是带入不同的 x 的求出的多项式的值。
这里写图片描述

那么,通过上一步已经求出了两个多项式(两个乘数)的yi,现在我们把对应的 yi 乘起来就是乘积的多项式的 Yi ,我们要求的是这个多项式的系数即 ai ,因此我们只要求出 ωkn 矩阵的逆矩阵即可。

最后推出 ai 的表达式
这里写图片描述
和第二步要求的式子几乎一样~再来一次FFT即可解决~
时间复杂度依然是 O(nlogn)

详见代码注释。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <complex>
#define pi acos(-1)
#define N 200005
using namespace std;
complex<double> a[N],b[N],p[N];
int n,c[N];
char s[N];
void FFT(complex<double> x[],int n,int p)
{
//把原来依次排列的数变成叶子中的顺序
    for (int i=0,t=0;i<n;i++)
    {
        if (i>t) swap(x[i],x[t]);
        for (int j=n>>1;(t^=j)<j;j>>=1);
    }
    for (int m=2;m<=n;m<<=1)  //枚举每一层
    {
        complex<double>       wn(cos(p*2*pi/m),sin(p*2*pi/m));
        for (int i=0;i<n;i+=m)
        {
            complex<double> w(1,0),u;
            int k=m>>1;
            for (int j=0;j<k;j++,w*=wn)
            {
            //蝴蝶操作
                u=x[i+j+k]*w;
                x[i+j+k]=x[i+j]-u;
                x[i+j]=x[i+j]+u;
            }
        }
    }
}
int main()
{
    cin>>n;
    scanf("%s",s);
    for (int i=0;i<n;i++)
        a[i]=s[n-i-1]-'0';
    scanf("%s",s);
    for (int i=0;i<n;i++)
        b[i]=s[n-i-1]-'0';
    //把长度变为2的幂次,方便FFT中的迭代
    for (int j=n,i=1;(i>>2)<j;i<<=1)  
        n=i;     
    FFT(a,n,1),FFT(b,n,1);
    for (int i=0;i<n;i++)
        p[i]=a[i]*b[i];
    //插值
    FFT(p,n,-1);
    for (int i=0;i<n;i++)
        c[i]=p[i].real()/n+0.1;
    int len=0;
    //进位
    for (int i=0;i<n;i++)
        if (c[i])
            len=i,c[i+1]+=c[i]/10,c[i]%=10;
    for (int i=len;i>=0;i--)
        printf("%d",c[i]);
    return 0;
}

这里写图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值