LeetCode 53. Maximum Subarray

本文介绍了求解最大连续子数组和问题的三种方法:三重循环的暴力枚举、二重循环的优化以及一重循环的贪心算法,并对每种方法进行了详细解析。

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.

问题描述:

求最大连续子数组的和

分析:

1、最简单 暴力枚举——三重循环
第一重循环:枚举子数组的起点,设为start
第二重循环:枚举子数组的终点,设为end
第三重循环:求和
代码如下:
// 三重循环 
int maxSubArray(vector<int>& nums) {
	int ans=-0x7ffffff;	// 最小的整数
	for(int start = 0; start < nums.size(); ++start){
		for(int end = start; end <= nums.size(); ++end){
			int sum = 0;
			for(int i = start; i < end; i++){
				sum+=nums[i];
			}
			if(ans < sum)
				ans = sum;
		}
	} 
	return ans;
} 
2、暴力枚举——二重循环
仔细观察,不难发现,上式中的sum会有重复计算,如:假设我们已经求过1-5的和,在计算1-6的和时候,又重新计算了1-5的和。因此需要把求和的部分优化一下。
int maxSubArray(vector<int>& nums) {
	int ans=-0x7ffffff;
	for(int start = 0; start < nums.size(); ++start){
		int sum = 0;
		for(int end = start; end < nums.size(); ++end){
			sum+=nums[end];
			if(ans < sum)
				ans = sum;
		}
	} 
	return ans;
} 
3、贪心——一重循环
网上较为流传的代码
sum = 0      ans = 0
for i  = 1 to n
    sum = sum + a[i]
    ans = max(sum, ans)
    if (sum < 0)  sum = 0
表示比较伤脑筋,看不懂。

这里就详细分析一下,贪心算法如何做的这道题目:
问题需要求解max(a[i]+a[i+1]+...+a[j]) i<j,
假设s[i] = a[0] + a[1] +... +a[i]
则原问题可以转化为max = s[j]-s[i-1]
假设 j 固定(因为可以枚举),s[j]也就是a[0]+...+a[j],则原问题转化为求s[i]的最小值
换句话说就是我们只要求出s[i]的最小值(实现方法也是枚举),然后枚举 j 的位置,最终求出的一定是最大值
具体实现如下:
int maxSubArray(vector<int>& nums) {
	int ans=-0x7fffffff, minSum=0x7fffffff;
	int si=0, sj=0;
	for(int i = 0; i < nums.size(); i++){
		sj+=nums[i];
		if(si < minSum)
			minSum = si;
		if(ans < sj-minSum)
			ans = sj-minSum;
		si+=nums[i];
	}
    return ans;
}
至此,求解最大子数组和复杂度有O(n^3),优化到了O(n)。
求最大连续子数组的和

你提供的代码是 **LeetCode53题:最大子数组和(Maximum Subarray)** 的标准动态规划解法,使用了 **Kadane 算法**,是一种非常高效的一维动态规划算法。它可以在 **O(n)** 时间复杂度内找到连续子数组的最大和。 --- ## ✅ 代码解析与完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; class Solution { public: int maxSubArray(vector<int>& nums) { int pre = 0, maxAns = nums[0]; for (const auto& x : nums) { pre = max(pre + x, x); // 当前元素与当前元素+前面序列和的最大值 maxAns = max(maxAns, pre); // 更新全局最大值 } return maxAns; } }; // 主函数测试 int main() { Solution sol; vector<int> nums; // 测试用例 1 nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n最大子数组和为: " << sol.maxSubArray(nums) << endl << endl; // 测试用例 2 nums = {1}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n最大子数组和为: " << sol.maxSubArray(nums) << endl << endl; // 测试用例 3 nums = {5, 4, -1, 7, 8}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n最大子数组和为: " << sol.maxSubArray(nums) << endl << endl; // 测试用例 4 nums = {-1, -2, -3, -4}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n最大子数组和为: " << sol.maxSubArray(nums) << endl << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: -2 1 -3 4 -1 2 1 -5 4 最大子数组和为: 6 输入数组: 1 最大子数组和为: 1 输入数组: 5 4 -1 7 8 最大子数组和为: 23 输入数组: -1 -2 -3 -4 最大子数组和为: -1 ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个整数数组 `nums`,找到一个具有最大和的连续子数组(子数组至少包含一个元素),返回其最大和。 ### ✅ 解法思路:Kadane 算法(贪心 + 动态规划) #### 核心思想: - 维护一个变量 `pre`,表示以当前元素结尾的最大子数组和。 - 对于每个元素 `x`: - 如果 `pre + x` 比 `x` 大,说明可以继续扩展当前子数组; - 否则,舍弃之前的子数组,从当前元素重新开始。 - 每次更新全局最大值 `maxAns`。 #### 示例说明: ``` nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] 遍历过程: pre = -2 → maxAns = -2 pre = max(-2 + 1, 1) = 1 → maxAns = 1 pre = max(1 + (-3), -3) = -2 → maxAns = 1 pre = max(-2 + 4, 4) = 4 → maxAns = 4 ... 最终 maxAns = 6 ``` --- ## ✅ 时间与空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(n) | 只遍历一次数组 | | 空间复杂度 | O(1) | 只使用常数级额外空间 | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<algorithm>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意空数组处理(虽然题目保证至少一个元素) - 确保 `max()` 函数参数正确 3. **逻辑错误** - 初始化 `maxAns` 为 `nums[0]` 是关键 - `pre` 的初始值应为 `0` --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | Kadane 算法(当前方法) | O(n) | O(1) | 最优解,推荐 | | 暴力枚举所有子数组 | O(n²) | O(1) | 简单但低效 | | 分治法(归并思想) | O(n log n) | O(log n) | 面试拓展思路 | | 动态规划(dp 数组) | O(n) | O(n) | 易理解,但空间略高 | ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值