Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum
= 6
.
问题描述:
求最大连续子数组的和
分析:
1、最简单 暴力枚举——三重循环
第一重循环:枚举子数组的起点,设为start
第二重循环:枚举子数组的终点,设为end
第三重循环:求和
代码如下:
// 三重循环
int maxSubArray(vector<int>& nums) {
int ans=-0x7ffffff; // 最小的整数
for(int start = 0; start < nums.size(); ++start){
for(int end = start; end <= nums.size(); ++end){
int sum = 0;
for(int i = start; i < end; i++){
sum+=nums[i];
}
if(ans < sum)
ans = sum;
}
}
return ans;
}
2、暴力枚举——二重循环
仔细观察,不难发现,上式中的sum会有重复计算,如:假设我们已经求过1-5的和,在计算1-6的和时候,又重新计算了1-5的和。因此需要把求和的部分优化一下。
int maxSubArray(vector<int>& nums) {
int ans=-0x7ffffff;
for(int start = 0; start < nums.size(); ++start){
int sum = 0;
for(int end = start; end < nums.size(); ++end){
sum+=nums[end];
if(ans < sum)
ans = sum;
}
}
return ans;
}
3、贪心——一重循环
网上较为流传的代码
sum = 0 ans = 0
for i = 1 to n
sum = sum + a[i]
ans = max(sum, ans)
if (sum < 0) sum = 0
表示比较伤脑筋,看不懂。这里就详细分析一下,贪心算法如何做的这道题目:
问题需要求解max(a[i]+a[i+1]+...+a[j]) i<j,
假设s[i] = a[0] + a[1] +... +a[i]
则原问题可以转化为max = s[j]-s[i-1]
假设 j 固定(因为可以枚举),s[j]也就是a[0]+...+a[j],则原问题转化为求s[i]的最小值
换句话说就是我们只要求出s[i]的最小值(实现方法也是枚举),然后枚举 j 的位置,最终求出的一定是最大值
具体实现如下:
int maxSubArray(vector<int>& nums) {
int ans=-0x7fffffff, minSum=0x7fffffff;
int si=0, sj=0;
for(int i = 0; i < nums.size(); i++){
sj+=nums[i];
if(si < minSum)
minSum = si;
if(ans < sj-minSum)
ans = sj-minSum;
si+=nums[i];
}
return ans;
}
至此,求解最大子数组和复杂度有O(n^3),优化到了O(n)。