LeetCode 53. Maximum Subarray

最大子数组和算法
本文介绍了求解最大连续子数组和问题的三种方法:三重循环的暴力枚举、二重循环的优化以及一重循环的贪心算法,并对每种方法进行了详细解析。

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.

问题描述:

求最大连续子数组的和

分析:

1、最简单 暴力枚举——三重循环
第一重循环:枚举子数组的起点,设为start
第二重循环:枚举子数组的终点,设为end
第三重循环:求和
代码如下:
// 三重循环 
int maxSubArray(vector<int>& nums) {
	int ans=-0x7ffffff;	// 最小的整数
	for(int start = 0; start < nums.size(); ++start){
		for(int end = start; end <= nums.size(); ++end){
			int sum = 0;
			for(int i = start; i < end; i++){
				sum+=nums[i];
			}
			if(ans < sum)
				ans = sum;
		}
	} 
	return ans;
} 
2、暴力枚举——二重循环
仔细观察,不难发现,上式中的sum会有重复计算,如:假设我们已经求过1-5的和,在计算1-6的和时候,又重新计算了1-5的和。因此需要把求和的部分优化一下。
int maxSubArray(vector<int>& nums) {
	int ans=-0x7ffffff;
	for(int start = 0; start < nums.size(); ++start){
		int sum = 0;
		for(int end = start; end < nums.size(); ++end){
			sum+=nums[end];
			if(ans < sum)
				ans = sum;
		}
	} 
	return ans;
} 
3、贪心——一重循环
网上较为流传的代码
sum = 0      ans = 0
for i  = 1 to n
    sum = sum + a[i]
    ans = max(sum, ans)
    if (sum < 0)  sum = 0
表示比较伤脑筋,看不懂。

这里就详细分析一下,贪心算法如何做的这道题目:
问题需要求解max(a[i]+a[i+1]+...+a[j]) i<j,
假设s[i] = a[0] + a[1] +... +a[i]
则原问题可以转化为max = s[j]-s[i-1]
假设 j 固定(因为可以枚举),s[j]也就是a[0]+...+a[j],则原问题转化为求s[i]的最小值
换句话说就是我们只要求出s[i]的最小值(实现方法也是枚举),然后枚举 j 的位置,最终求出的一定是最大值
具体实现如下:
int maxSubArray(vector<int>& nums) {
	int ans=-0x7fffffff, minSum=0x7fffffff;
	int si=0, sj=0;
	for(int i = 0; i < nums.size(); i++){
		sj+=nums[i];
		if(si < minSum)
			minSum = si;
		if(ans < sj-minSum)
			ans = sj-minSum;
		si+=nums[i];
	}
    return ans;
}
至此,求解最大子数组和复杂度有O(n^3),优化到了O(n)。
求最大连续子数组的和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值