Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
问题描述:
求数组最大乘积问题
解题思路:
这类问题与最大连续子序列的和问题求解方法类似,不过问题增加了一个变量,两个负数的乘积也为正数。因此,该问题需要保存两个变量,正数的最大值,负数的最大值。
第i步获取正数最大值可能有三种情况:两个负数相乘、两个正数相乘、当前的数的值。
同理:获取负数的最大值:正数乘以负数,负数乘以正数,当前值。
也就是说求解三个数中的最大值,最小值
ans_max = max(a[i],max(_max*a[i],_min*a[i]));
ans_min = min(a[i],min(_max*a[i],_min*a[i]));
代码:
class Solution {
public:
int maxProduct(vector<int>& nums) {
int _max = nums[0],_min = nums[0];// 保存每一步计算的最大、最小值
int ans = nums[0];
for(int i = 1; i < nums.size(); i++){
int ans1, ans2; // 暂存最大、最小值
// printf("min = %d_max = %d_ans = %d\n",_min,_max,ans);
ans1 = max(nums[i],max(_max*nums[i],_min*nums[i]));
ans2 = min(nums[i],min(_max*nums[i],_min*nums[i]));
_max = max(ans1,ans2);
_min = min(ans1,ans2);
ans = max(ans,max(ans1,ans2));
}
return ans;
}
};
如有更好的想法,欢迎讨论!