【HDU 1588】Gauss Fibonacci(矩阵快速幂+二分)

原创 2016年06月01日 17:44:24

Gauss Fibonacci
Time Limit: 1000/1000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3144 Accepted Submission(s): 1319

Problem Description
Without expecting, Angel replied quickly.She says: “I’v heard that you’r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. ”
How good an opportunity that Gardon can not give up! The “Problem GF” told by Angel is actually “Gauss Fibonacci”.
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0 ,f(1)=1 ,f(n)=f(n-1)+f(n-2) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.

Input
The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.

Output
For each line input, out the value described above.

Sample Input
2 1 4 100
2 0 4 100

Sample Output
21
12

[题意][求n1i=0 f[k*i+b] % p 的值(f代表斐波那契数列)]
【题解】【矩阵快速幂】
A={{1,1},{1,0}},B={{1,0},{0,1}}

n1i=0 f[k*i+b]
=Ab+Ak+b+A2k+b++A(n1)k+b
=Ab(1+Ak+A2k+A3k++A(n1)k)
设:B=Ak
∴ =Ab(B0+B1+B2+B3++Bn1)
由本题的范围可以得知,不可能直接枚举,所以需要优化时间,二分+递归无疑是最显然的方法……
又∵ 对于矩阵Sm=F1+F2+F3++Fm
mS(m)=(1+Fm/2)(F+F2+F3++Fm/2)
mS(m)=F+(F+Fm/2+1)(F+F2++Fm/2)
∴ 在本题中,式子最终化为 n1i=0 f[k*i+b]=Ab(B0+S)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
struct node{
    ll k[2][2];
}a,e,t;
int n,k,b;
ll mod;

inline node jc(node a1,node b1)
{
    int i,j,l;
    node c;
    c.k[0][0]=c.k[0][1]=c.k[1][0]=c.k[1][1]=0;
    for(i=0;i<=1;++i)
     for(j=0;j<=1;++j) 
      for(l=0;l<=1;++l)
       c.k[i][j]=(c.k[i][j]+a1.k[i][l]*b1.k[l][j]%mod)%mod;
    return c;
}
inline node add(node a1,node b1)
{
    int i,j;
    node c;
    for(i=0;i<=1;++i)
     for(j=0;j<=1;++j)
      c.k[i][j]=(a1.k[i][j]+b1.k[i][j])%mod;
    return c;
}
node poww(node x,int p)
{
    node sum;
    sum.k[0][0]=sum.k[1][1]=1; sum.k[0][1]=sum.k[1][0]=0;
    node c=x;
    while(p)
    {
        if (p&1) sum=jc(sum,c);
        p>>=1;
        c=jc(c,c);
    }
    return sum;
}
node check(int h)
{
    if(h==1) return t;
    node sum=poww(t,((h+1)/2));
    node s1=check(h/2);
    if(h%2) return add(t,jc(add(t,sum),s1));
     else return jc(add(e,sum),s1);
}


int main()
{
    a.k[0][0]=a.k[0][1]=a.k[1][0]=1; a.k[1][1]=0;
    e.k[0][0]=e.k[1][1]=1; e.k[0][1]=e.k[1][0]=0;
    while((scanf("%d%d%d%lld",&k,&b,&n,&mod))==4)
     {
        node t1=poww(a,b);
        t=poww(a,k);
        node ans=jc(t1,add(e,check(n-1)));
        printf("%lld\n",ans.k[0][1]);
     }
}
版权声明:本文为博主原创文章,转载请注明出处:http://blog.csdn.net/reverie_mjp

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b...
  • hcbbt
  • hcbbt
  • 2014年08月05日 01:10
  • 2330

hdu 1588 Gauss Fibonacci (二分+矩阵快速幂)

Gauss Fibonacci hdu 1588Description Without expecting, Angel replied quickly.She says: “I’v he...
  • feizaoSYUACM
  • feizaoSYUACM
  • 2016年07月17日 22:43
  • 293

hdu 1588 Gauss Fibonacci(矩阵快速幂)

Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...
  • u010650359
  • u010650359
  • 2014年07月27日 22:59
  • 591

HDU 1588 Gauss Fibonacci(矩阵快速幂)

思路:显然的有f(n)=A^n,那么把g(i)代入后有sum = A^b+A^(k+b)+A^(2k+b)+...A^((n-1)k+b)            提取A^b之后sum = A^b*(...
  • qq_21057881
  • qq_21057881
  • 2016年08月16日 15:04
  • 175

HDU 1588 Gauss Fibonacci(矩阵快速幂)

题目地址:HDU 1588 用于构造斐波那契的矩阵为 1,1 1,0 设这个矩阵为A。 sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*...
  • u013013910
  • u013013910
  • 2014年09月18日 17:25
  • 987

HDU 1588 Gauss Fibonacci 矩阵快速幂

Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)...
  • budlele
  • budlele
  • 2014年07月26日 14:34
  • 368

【HDU】1588 Gauss Fibonacci 矩阵快速幂

传送门:【HDU】1588 Gauss Fibonacci
  • u013368721
  • u013368721
  • 2014年09月18日 21:51
  • 738

hdu 1588 Gauss Fibonacci (矩阵)

Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)...
  • clover_hxy
  • clover_hxy
  • 2016年05月22日 20:09
  • 263

hdu 1588 - Gauss Fibonacci

对于Fib
  • u014435976
  • u014435976
  • 2014年09月10日 18:59
  • 380

[POJ 1588] Gauss Fibonacci (矩阵快速幂)

链接HDU 1588题意求若干项fibonacci数列的sum(fibonacci[j]),j = k*i + b。 fibonacci数列的等差数列项求和。题解矩阵快速幂的一个经典例题就是快速求出...
  • zichenzhiguang
  • zichenzhiguang
  • 2016年09月30日 14:12
  • 156
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【HDU 1588】Gauss Fibonacci(矩阵快速幂+二分)
举报原因:
原因补充:

(最多只允许输入30个字)