算法系列(四)排序算法中篇--归并排序和快速排序

原创 2016年05月30日 23:04:57

算法系列(三)排序算法上篇 一文中,介绍了冒泡排序,插入排序和选择排序算法。这篇文章继续讲解排序算法。

概述

冒泡排序,插入排序和选择排序算法这些算法的时间复杂度都是O(N^2),是否有更高效的排序算法呢?当然有了,堆排序,归并排序,快速排序,它们的时间复杂度都是O(nlogn)。堆排序使用了树结构,到目我们前还没有介绍树相关的算法,这里先分析归并排序跟快速排序。

归并排序

基本原理

归并排序使用了一个被称为分治法的通用模式,在分治法中,我们将问题分解为类似于原子问题的问题,递归的求解这些子问题,然后再合并这些自问题的解来得出原问题的解。
分治法的一般步骤
1、分解:把一个问题分解为多个子问题,这些子问题是更小实例上的原问题。
2、解决:递归求解自问题。当子问题足够小时,按照基础情况求解。
3、合并:把自问题的解合并为原问题的解。
归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针超出序列尾
将另一序列剩下的所有元素直接复制到合并序列尾

具体过程

对于归并排序的实现,我们看一下《算法基础》中给的一个归并的例子

代码实现

(比较容易理解,但是写的不是很好,合并方法可以优化)

package com.algorithm.sort;

/**
 * 归并排序
 * 
 * @author chao
 *
 */
public class MergeSort {
	/**
	 * 归并排序
	 * 
	 * @param num
	 * @param start
	 * @param end
	 */
	public static void sort(int num[], int start, int end) {
		if (start >= end) {
			return;
		}
		int mid = (start + end) / 2;
		sort(num, start, mid);
		sort(num, mid + 1, end);
		merge(num, start, mid, end);

	}

	/**
	 * num[start]到num[mid]是有序的,num[mid+1]到num[end]是有序的,
	 * 重新合并数组,使数组num[start]到num[end]有序
	 * 
	 * @param num
	 * @param start
	 * @param mid
	 * @param end
	 */
	public static void merge(int[] num, int start, int mid, int end) {
		int[] num1 = new int[mid - start + 1];
		int[] num2 = new int[end - mid];
		int i, j, k;
		for (i = start; i <= end; i++) {
			if (i - start < num1.length) {
				num1[i - start] = num[i];
			} else {
				num2[i - start - num1.length] = num[i];
			}
		}
		i = j = k = 0;
		while (i < num1.length && j < num2.length) {
			if (num1[i] <= num2[j]) {
				num[start + k++] = num1[i++];
			} else {
				num[start + k++] = num2[j++];
			}
		}

		while (i < num1.length) {
			num[start + k++] = num1[i++];
		}
		while (j < num2.length) {
			num[start + k++] = num2[j++];
		}
	}

	public static void main(String[] args) {
		int[] num = { 1, 5, 3, 2 };
		sort(num, 0, num.length - 1);
		for (int i = 0; i < num.length; i++)
			System.out.print(num[i] + " ");
	}
}

时间复杂度

最好最的时间复杂度都是O(nlogn)
尽管归并排序效率很高,但是还是有一些缺点。归并排序并不是原址的,它必须将整个数组进行完全拷贝,如果空间非常宝贵,不适合使用归并排序。

快速排序

基本原理

和归并排序一样,快速排序也使用分治模式
假设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:
1、设置两个变量I、J,排序开始的时候I:=1,J:=N-1;
2、以第一个数组元素作为关键数据,赋值给X,即X=A[1];
3、从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于X的值,两者交换;
4、从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于X的值,两者交换;
5、重复第3、4步,直到I=J;

具体过程
待排序的数组A的值分别是:(初始关键数据X=49)
                   A[0]     A[1]     A[2]     A[3]     A[4]      A[5]     A[6]:
                     49        38       65       97       76       13        27
进行第一次交换后:   27        38       65       97       76       13        49
                   ( 按照算法的第三步从后面开始找)
进行第二次交换后:   27        38       49       97       76       13        65
                  ( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后:   27        38       13       97       76       49        65
( 按照算法的第五步将又一次执行算法的第三步从后开始找)
进行第四次交换后:   27        38       13       49       76       97        65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J=4 )
此时再执行第三不的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:
27        38       13       49       76       97        65,
即所有大于49的数全部在49的后面,所有小于49的数全部在49的前面。

代码实现

package com.algorithm.sort;

/**
 * 快速排序
 * 
 * @author chao
 *
 */
public class QuickSort {
	/**
	 * 快速排序
	 * 
	 * @param num
	 * @param left
	 * @param right
	 */
	public static void sort(int[] num, int left, int right) {
		if (left < right) {
			int dp = partition(num, left, right);
			sort(num, left, dp - 1);
			sort(num, dp + 1, right);
		}
	}

	/**
	 * 数据分组
	 * 
	 * @param num
	 * @param left
	 * @param right
	 */
	public static int partition(int[] num, int left, int right) {
		int pivot = num[left];
		while (left < right) {
			while (left < right && num[right] >= pivot)
				right--;
			if (left < right)
				num[left++] = num[right];
			while (left < right && num[left] <= pivot)
				left++;
			if (left < right)
				num[right--] = num[left];
		}
		num[left] = pivot;
		return left;
	}

	public static void main(String[] args) {
		int[] num = { 1, 5, 3, 2 };
		sort(num, 0, num.length - 1);
		for (int i = 0; i < num.length; i++)
			System.out.print(num[i] + " ");

	}

}

复杂度分析

最好的情况是枢纽元选取得当,每次都能均匀的划分序列。 时间复杂度O(nlogn)
最坏情况是枢纽元为最大或者最小数字,那么所有数都划分到一个序列去了 时间复杂度为O(n^2)


算法实现代码github地址为我的github

后续会不断补充,有些地方写的可能有问题,请多指教。

欢迎扫描二维码,关注公众账号




版权声明:本文为robert原创文章,未经博主允许不得转载。博客地址http://blog.csdn.net/robertcpp 举报

相关文章推荐

算法系列(四)排序算法中篇--归并排序和快速排序

在算法系列(三)排序算法上篇 一文中,介绍了冒泡排序,插入排序和选择排序算法。这篇文章继续讲解排序算法。 概述 冒泡排序,插入排序和选择排序算法这些算法的时间复杂度都是O(N^2),是否有更高效的排序...

排序算法系列——归并排序

归并排序的核心思想同上一篇介绍的快速排序,都是采用了分治法的思想。其基本思想是将一个待排序序列,划分成两个子序列,然后将这两个子序列排好序之后合并,并递归的将子序列划分为更小的子序列,一直到只有一个元...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

排序算法 快速排序 归并排序 堆排序

一:插入排序思想:在对整个数组循环for(i = 0;i < n;i++)的过程中,保证此时走到的i位置的前面已经是一个有序序列,所以对于i位置的处理就是由i位置依次向前,找到第一个不满足大于此时i位...

排序算法--冒泡排序,归并排序,快速排序

冒泡排序: 属于交换排序的一种。 很好理解的交换排序是这样的:for (int i = 0; i < n; ++i) for (int j = i+1; j nums[j...

排序算法系列——快速排序

快速排序同冒泡排序,是交换排序的一种。快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。...

排序算法系列:快速排序

快速排序

排序算法之快速排序和归并排序

申明:此博文转自他人,感觉不错特转载供大家分享 摘要:一般评判排序算法的标准有时间代价,空间代价和稳定性。本文主要讨论性质相对比较好且作者喜欢的快速排序算法和归并排序算法,并对此这做了一定比较。 ...

排序算法2-快速排序、归并排序

快速排序的思路是这样的: 假如我从数组中挑出一个数(通常选为第一个数),那么我总可以利用这个数把数组分为两部分:大于这个数的部分和小于这个数的部分。然后对于这个两部分,分别重复前面的步骤,直到每一部...

排序算法之快速排序、归并排序(java实现)

前面一篇文章已经讲到了三个比较简单的排序算法,现在准备说一下比较高级一点的两个算法,他们在数据量比较大的时候的效果还是很明显的,我这里给出java的实现代码。 1.快速排序 过程:将待排序的第一个...

Java排序算法(四):快速排序

Java排序算法(四):快速排序 快速排序是一个速度非常快的交换排序算法,它的基本思路很简单,从待排的数据序列中任取一个数据(如第一个数据)作为分界值,所有比它小的数据元素放到左边,...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)