关闭

SI疾病传播模型实现

在SI疾病传播模型中,网络中的节点在任一时刻有两种可能的状态,易感态susceptible(S)和感染态infected(I)。处于易感态(S)的节点当被感染后转变为感染态(I)并且不能恢复。我们假设在t_0时刻网络中除了一个节点被感染了之外,这个节点就是传播源,其余的所有节点都处于易感态。之后传播源以一定的疾病传播概率(rates of infection)感染它的邻居,与此同时,疾病或者是信息...
阅读(517) 评论(0)

使用networkx计算网络的介数中心性

网络节点的重要性指标介数中心性的计算,使用python的包networkx import networkx as nx G = nx.Graph() #从文件中读取网络的adjacentMatrix,通过networkx的add_edges方法向对象G中添加边 def readNetwork(filename): fin = open(filename, 'r') # for line...
阅读(613) 评论(0)

聚类系数可调的无标度网络生成算法

0. BA无标度网络模型简单介绍: 实际网络的两个重要的特性:       (1)增长性:即网络的规模是不断的增长的,ER随机图和WS小世界模型中的网络的大小是固定       (2)优先连接(Preferential  attachment以下简称PA):新的节点更倾向于和那些具有较高的连接度的hub节点相连。这种现象也叫作“富者更富(Rich get richer)”或者是“马太效应”...
阅读(1251) 评论(9)

higher-ordering cluster的C语言实现

#include #include #include #include #define INITIAL_SIZE 100 #define INCREMENT_SIZE 100 int vertax_size; int edge_size; char filename_edge[20]; typedef struct Node{ double value; int index; }Node...
阅读(395) 评论(1)

《Higher-order organization of complex networks》-论文学习笔记

0.前言:        最近阅读了Benson等人发表在science上的论文《Higher-order organization of complex networks》,在该论文中作者提出了一种通用的框架,可在网络中基于高阶连接模式进行聚类。 和以往接触的聚类方法(K-means, 层次聚类, DBSCAN, 或者OPRICS)等不同的是: K-means等在对item进行聚类的时候,...
阅读(887) 评论(4)

通过似然分析预测丢失的边和虚假的边--的C语言代码实现

#include #include #include #include int kc = 12; int training_set_size; int probe_set_size; int vertax_set_size; char training_filename[200]; char probe_filename[200]; char vertax_filename[200]; int...
阅读(361) 评论(0)

通过似然分析预测丢失的边和虚假的边(潘黎明,周涛著)

真实网络中的数据往往是不完全,存在噪音的。这时, 丢失边预测算法和虚假边的识别算法就有了用武之地。在这里提出了一种算法的框架:网络的似然可以通过预先定义好的哈密顿量来计算, 这个哈密顿量的定义考虑了网络形成的一些重要的驱动因素, 这样的话,一条没有被观测到的边的存在的“得分”可以通过计算将这条边加入已经观测到的网络中的似然来表示。 对于丢失边的预测问题,其目的是要根据已有的网路的拓扑结构和节点的...
阅读(775) 评论(0)

OPTICS算法的C语言实现

在这个方法中,不像前面的相关的聚类的文章中产生数据集合的聚类结果,而是产生一个基于密度的表示数据的固有的聚类结构的一个增广的排序,除了应用到DBSCAN中的相关的概念(核心对象, 直接密度可达,密度可达,和密度相连),有增加了两个概念, 一个是核心距离:即使得一个object满足称为核心对象的最小的距离(即,在用户输入的ε和MinPtr的情况下成为核心对象的最小的距离,如果改对象不是在ε和MinP...
阅读(806) 评论(0)

层次聚类算法之single-linkage和complete-linkage(C语言实现)

层次聚类试图在不同层次上对数据集合进行划分, 从而形成树形的聚类结构。数据集的划分可采用“自底向上”的聚合策略,也可以采用“自顶向下”的分拆策略。 AGNES是一种采用自底向上的聚合策略的层次聚合算法,它先将数据集中的每个样本看作是一个初始的聚类簇,然后在算法进行的每一步中找出距离最近的两个聚类来进行合并,该过程不断的重复,直到到达预设的聚类簇的个数。 改算法的关键是如何计算聚类之间的距离,...
阅读(1910) 评论(0)

基于密度的聚类算法C语言实现--DBSCAN

#include #include #include #include #include //#define INITIALASSIGN_COREOBJECT 100 //#define INCREASEMENT_COREOBJECT 100 #define INITIALASSIGN_DIRECTLYDENSITYREACHABLE 100 #define INCREASEMENT_D...
阅读(1628) 评论(0)

K-means算法(基于MovieLens数据分别对user和movie聚类)

本代码对高维的数据使用K-means算法进行聚类。使用的数据集是MovieLens。MovieLens中一共包含十万条记录,每一条记录分别由用户ID,电影ID,用户对电影的评分(1~5),以及日期组成。本代码使用评分作为用户或者是电影的特征向量分别对电影和用户进行聚类。聚类的结果通过代码写入文件中。在代码中通过选择运行第107或108行来决定针对用户还是电影进行聚类,其他的代码不变。 #incl...
阅读(1380) 评论(3)

简单的K-means算法C语言实现代码

#include #include #include #include #include #define DIMENSIOM 2 //目前只是处理2维的数据 #define MAX_ROUND_TIME 100 //最大的聚类次数 typedef struct Item{ int dimension_1; //用于存放第一维的数据 int dimension_2; //用于存放第...
阅读(3549) 评论(0)

个性化推荐算法:GRM,CF,NBI的实现

All three algorithms GRM, CF, and NBI can provide each user an ordered queue of all its uncollected movies. For an arbitrary user ui, if the edge ui−oj is in the probe set according to the trai...
阅读(2030) 评论(1)

BA无标度网络模型构造算法

/******************************************************************************************************* * BA无边度网络模型构造算法 * (1)增长:从一个具有m0个节点的联通网络开始,每次引入一个新的节点 * 并且连到m个已经存在的节点上,这里m<=m0...
阅读(5279) 评论(11)

WS小世界网络模型构造算法

/*********************************************************************************************************************** * WS小世界模型构造算法: * (1)从规则图开始:给定一个含有N个节点的环状最近邻耦合网络, * 其中的每个节点都与它左右相邻的各...
阅读(4095) 评论(0)
16条 共2页1 2 下一页 尾页
    个人资料
    • 访问:70325次
    • 积分:1435
    • 等级:
    • 排名:千里之外
    • 原创:75篇
    • 转载:0篇
    • 译文:0篇
    • 评论:47条
    最新评论