自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(184)
  • 收藏
  • 关注

原创 第九章 多元函数微分法及其应用 3.全微分

本文介绍了二元函数全微分的概念与相关定理。首先定义了全增量,即二元函数在两个变量同时变化时的增量。全微分则是全增量的线性近似表示,当函数在某点可微时,其全微分等于偏导数与变量增量的线性组合。文中证明了三个关键定理:1)可微函数在该点偏导数必存在;2)可微函数在该点必连续;3)若偏导数在该点连续,则函数在该点可微。这些定理从不同角度阐述了全微分与偏导数、连续性之间的关系,为多元函数微分学提供了理论基础。

2025-12-27 13:44:32 766

原创 可持久化线段树(单点修改,区间查询)

给定一个长度为n的数组a,下标为1∼n,一共有m条查询。对于每条查询,会给定三个数字lrk,表示查询数组al⋯ar内第k小的数字。

2025-12-26 14:17:56 611

原创 可持久化线段树(单点修改,单点查询)

给定一个长度为n的数组arr,下标为1∼n,原始数组认为是0号版本。一共有mv1xyvxyv2xvx每条操作后得到的新版本数组,其版本编号为第i次操作的操作次序。

2025-12-23 14:22:18 631

原创 保姆级教学——字典树

这里只介绍基本的构建框架,因为字典树的能实现的功能很多,所以结点信息种类也很多,不可能把所有的信息都写上,所以只写框架,后续再根据题目自己补充。这个具体题目有具体的删除方式,主要是看我们给每个结点定义了怎样的信息,参照之前每个字符串是如何贡献的,删除字符串就是将字符串的贡献取消。将所有二进制存入字典树后,我们要想最终异或的结果最大,那么就要尽可能地让高位二进制位不同。判断在所有字符串中,是否存在一个字符串是另一个字符串的前缀。所以只需要按顺序添加字符串,然后判断这个字符串的末尾结点的。

2025-12-12 21:06:00 957

原创 第八章 向量代数与空间解析几何 1.2.向量及其线性运算、数量积、向量积、混合积

本文系统介绍了向量空间及其相关运算。向量空间是由满足加法封闭性、数乘封闭性等十条运算规律的非空集合构成的,其元素可以是几何向量、函数或矩阵。通过定义基和坐标,建立了向量与实数坐标之间的双向映射,使向量运算转化为坐标运算。此外,通过引入内积运算,定义了向量的长度和角度,满足对称性、双线性性和正定性等性质。这些概念为研究向量空间的结构和性质提供了数学基础。

2025-12-09 14:06:33 718

原创 胎教级别讲解,如何利用线段树求解不带修区间 mex 问题

mex。

2025-12-04 12:42:20 824

原创 你真的懂线段树的 lazy 操作吗,万字解析带你彻底掌握,从此不再需要模板。

我认为,理解lazylazy操作会遇到的第一个困难是,对lazytaglazytag没有清晰确定的定义。比如当一个结点nodenode的加法标记lazyaddxlazyaddx,这意味着什么?我们的回答可能是:“意味着这个结点所代表的区间都欠着一个常数x\mathrm{x}x需要被累加”。这句话是对的,但不够细致,当我们真正地去实现一棵线段树时,我们就会感觉到这个定义是不够细致的。这个问题具体地说就是,如果一个结点u\mathrm{u}

2025-12-02 14:45:04 839

原创 第三章 微分中值定理与导数的应用 2.洛必达法则

洛必达法则是求解0/0型和∞/∞型未定式极限的重要方法,其理论基础是柯西中值定理。该法则要求函数在极限点附近可导,且导数的极限存在或趋于无穷。对于0/0型未定式,通过将原极限转化为导数之比的极限来求解;而∞/∞型可通过倒数变换转化为0/0型处理。应用时需注意:只有当导数比的极限确定存在时,才能保证原极限与之相等。这一方法为求解复杂极限提供了有效工具。

2025-12-01 14:36:22 585

原创 保姆级教学线段树二分——精选例题1

对于那些不是一定会看这部电影的观众而言,另一个促使他们去观看电影的因素是。如果一个电影能满足观众的偏好,那么观众一定会看这部电影。是否满足需求,如果满足需求,就往右子树查询,否则往左子树查询。代入到上述计算式中,所得到的结果是这名观众会去看这部电影的。个观众的喜好,修改并非独立的,你需要回答修改之后,最终的。,所以每个位置的最大值个数其实就是前缀不包含它的观众的个数。从小到大排序所有观众的需求,如果一个观众的需求是。个观众,每个观众对电影的偏好是该电影至少要有。),对于一个没有看这部电影的人,如果。

2025-11-28 20:36:47 716

原创 第三章 微分中值定理与导数的应用 1.微分中值定理

第二章中,我们讲了什么是导数,导数是函数变化率的数值体现,我们还着重讲了如何去求解各种函数的导数,这一章我们基于导数,去介绍一些微分学的中值定理,目的是扩展导数的应用范围,让我们对导数的认知不只局限于求导。

2025-11-28 19:47:50 450

原创 第七章 微分方程 5.可降阶的高阶微分方程

本文介绍了三种可降阶的高阶微分方程解法。第一种是y^(n)=f(x)型,通过多次积分求解。第二种是y''=f(x,y')型,通过令p=y'化为一阶方程。第三种是y''=f(y,y')型,利用链式法则转化为关于p=y'的一阶方程。文章强调,降阶后的方程必须能化为已知可解形式(如线性、伯努利、齐次或可分离变量方程),否则可能无初等解。这些方法为处理高阶微分方程提供了系统思路。

2025-11-26 14:02:10 261

原创 第七章 微分方程 2.3.4 解一阶微分方程

到现在,我们就学完了一阶线性微分方程,和一些结构巧妙的一阶非线性微分方程的解。可变量分离微分方程、齐次微分方程、伯努利方程既可以是一阶线性微分方程,又可以是一阶非线性微分方程。可变量分离的微分方程的结构是φydyμxdxφydyμxdx,我们只需要对其左右两边积分即可。齐次微分方程的结构是dydxφyxdxdy​φxy​,我们利用换元法令zyxzxy​,那么dydxdydzdzdxdxdy​。

2025-11-25 14:28:59 620

原创 换根DP例题3 AT_dp_v

给定一棵n个结点的无向树,最初每个结点都是白色,你需要选择一些结点并将其染成黑色,且保证任意两个黑色结点都可以通过黑色结点互相到达。请对于每个点1≤v≤n,求出将v染成黑色的所有染色方案。N≤105。

2025-11-24 16:33:47 963

原创 换根DP例题2 CF708C

给你一棵n个结点的无向树,你可以执行最多一次的边替换操作,即从树中删除任意一条边,但不删除顶点,然后再往树内加一条边,且不添加新结点,操作完后该图必须是树。对于每个结点,你需要判断是否能通过执行至多一次操作,使得它们变成树的重心。

2025-11-21 22:28:48 789

原创 第二章 导数与微分 4.隐函数及由参数方程所确定的函数的导数

来做研究的,因为。

2025-11-21 16:18:30 776

原创 第二章 导数与微分 2.函数的求导法则

在第一章中,其实有过很多次 “概念” 到 “运算法则” 到 “处理各种初等函数的运算” 的流程。在第一章我们先介绍了极限的概念,假设我们现在只知道如何求x的极限,然后我们又讲了无穷小无穷大和极限运算法则,有了这些法则我们就可以求出经过有限次对x的加减乘除所得的函数的极限,即x的多项式的极限。然后讲了极限存在准则与两个重要极限,通过夹逼准则我们能求出一些三角函数的极限、和通过单调有界函数必有极限准则,我们掌握了求形如1x1​x。

2025-11-20 19:35:36 884

原创 第二章 导数与微分 3.高阶导数

在某些时候,我们需要研究导数的函数变化率,这就要求对导数继续求导,我们管对导数求导所得的导数叫做高阶导数。实际上这一章的意义就是告诉我们导数其实也是一种函数,所以它是可以具有导数的,以及。具有二阶导数,就说明它的导数在定义域内是连续的,以此类推。具有一阶导数,就说明它在定义域内是连续的,同理如果。可以发现这是二项式展开的样子,于是有推论是。阶导数,其实也有运算法则,对于加减法。求一次导可以看作是一阶导数,记作。求两次导可以看作是二阶导数,记作。,而对于乘除法我们需要特殊记忆一下。以此类推如果对一个函数。

2025-11-20 19:35:05 407

原创 换根DP例题1 CF1187E

给你一棵n个结点的无向树,你需要玩一个游戏,最开始所有结点颜色是白色。第一轮游戏你需要选择一个结点染成黑色,之后的每一轮你可以选择任意一个与黑色结点相邻的白色结点,将其染色为黑色。每次你选择一个白色结点时,你都会得到一个分数,这个分数等于你选择的白色结点所在的连通块大小。你的任务是最大化你的分数。

2025-11-20 18:41:24 390

原创 换根DP模板

给你一个n个结点的无向树,请求出一个结点,使得以这个结点为根时,所有结点的深度之和最大。一个结点的深度被定义为该节点到根的简单路径上边的数量。

2025-11-20 16:13:59 829

原创 第二章 导数与微分 1.导数概念

导数是用来刻画函数的变化率的指标,函数的增量我们并不陌生,比如我们要求函数在x0x1[x_0,x_1]x0​x1​的增量,即随着自变量增加x1−x0x_1-x_0x1​−x0​,函数值也变化了fx1−fx0fx1​−fx0​,那么在这个过程中函数的变化快慢,或者说函数的变化率就是fx1−fx0x1−x0x1​−x0​fx1​−fx0​​。

2025-11-19 14:49:07 657

原创 第一章 函数与极限 10.闭区间上连续函数的性质

一个函数在闭区间上连续,要求在开区间上每一点都连续,且闭区间的端点具有对应的单侧极限。看到这一节我们可能会产生一个问题,即为什么只讨论闭区间上的连续函数,而不讨论开区间上的连续函数呢?闭区间上需要定义出怎样的性质,才值得我们来讨论呢?

2025-11-18 15:41:19 387

原创 第一章 函数与极限 9.连续函数的运算与初等函数的连续性

为什么要定义连续函数的运算呢?因为连续函数具有很好的性质,即在每一点上的极限都等于函数值。如果把每一种连续函数看成孤立的点,我们想知道是否连续函数之间是有关联的。

2025-11-18 15:40:10 427

原创 第一章 函数与极限 8.函数的连续性与间断点

如果fxf(x)fx在x0x_0x0​处连续,那么首先fxf(x)fx必须在x0x_0x0​处有定义,然后fxf(x)fx必须在x0x_0x0​的某个邻域内有定义,对于任意正数εε都能找到一个正数δ\deltaδ使得∣x−x0∣δ∣x−x0​∣δ时必然有∣fx−fx0∣ε∣fx−fx0​∣ε。这意味着,在x0x_0x0​处连续,就必须保证fxf(x)fx。

2025-11-15 15:52:57 848

原创 第一章 函数与极限 7.无穷小的比较

在前面的学习中,我们将无穷小作为一个基本单位代入到了极限的运算中如一个函数可以用常数加无穷小所代替,且进一步提出了关于无穷小的运算准则,如有限个无穷小之和为无穷小,有限个无穷小之积为无穷小,无穷小乘有界函数为无穷小,无穷小乘常数为无穷小。并以这些为基础定义了极限的四则运算。

2025-11-14 15:40:59 530

原创 第一章 函数与极限 6. 极限存在准则与两个重要极限

经过上一节的学习,我们可以发现我们证明极限的四则运算都是用到了将fx代换为Aα这个技巧。从某种意义上说,我们可以认为无穷小就是极限计算里的一种基本单位。在学习这一节内容之前,我们判断一个函数在某处是否存在极限,只能通过ε−δ定义来构造出一个δ,但是当函数较为复杂的时候,并不是很好构造出这样的δ,所以我们接下来介绍另两种判断极限存在的准则。

2025-11-14 14:26:12 947

原创 第一章 函数与极限 5.极限运算法则

在第四节的定理一中将无穷小与其他函数的非零极限联系在一起,迈出了的第一步,这一节我们进一步描述极限的四则运算,这是极限运算的基础。此外我们如果有多个极限同时出现,且lim符号没有自变量的趋近过程,那么我们就默认这些极限是同一个变量的同一变化过程。

2025-11-13 19:40:09 984

原创 前缀和优化DP——划艇

来划分,而当最后一所学校派出的划艇数量确定时,我们又可以按倒数第二所学校派出的划艇数量来划分这种方案,以此类推。令。

2025-11-13 19:10:05 1163

原创 第一章 函数与极限 4.无穷小与无穷大

如果函数fxf(x)fx当x→x0x\rarr x_0x→x0​(或x→∞x→∞)时的 极限为零,那么称函数fxf(x)fx为当x→x0x\rarr x_0x→x0​(或x→∞x→∞)时的 无穷小。此时就能恰好回答上面的问题,无穷小描述的是极限,所以无穷小是一个性质,或者说无穷小是一个过程。因为极限是可达的,所以无穷小也是可达的,这并不是说不可达就不能称为无穷小,实际上不可达是可达的子集,所以自变量x→0x\rarr 0x→0。

2025-11-11 18:46:59 591

原创 第一章 函数与极限 3.函数的极限

设函数fxf(x)fx在点x0x_0x0​的某一去心邻域UUU内有定义,如果存在常数AAA使得对于任意给定的正数εε,总存在正数δ\deltaδ使得当∣x−x0∣δ∣x−x0​∣δ时,总有∣fx−A∣ε∣fx−A∣ε,其中x∈Ux\in Ux∈U。此时我们就说fxf(x)fx在x0x_0x0​处的极限是AAA,记作lim⁡x→x0fxAlimx→x0​。

2025-11-11 15:24:02 960

原创 MarkDown 数学符号

φ\varphiε。

2025-11-05 15:38:19 182

原创 第一章 函数与极限 2.数列的极限

由于本节描述的是数列的极限,所以我们先定义在数列语境下的无限逼近,值得注意的是我们只研究那种具有通项公式的数列,对于没有规则的数列暂时不在我们研究范围内。设xn\{x_n\}xn​是一个数列,如果存在一个常数AAA,使得对于任意正数εε,都能找到一个正整数NNN,使得当nNn>NnN时,不等式∣xn−A∣ε∣xn​−A∣ε成立,那么就称AAA是xnx_nxn​的极限值,即xnx_nxn​在nnn。

2025-11-05 11:44:21 457

原创 第一章 函数与极限 1.映射与函数

没有任何交集的话,那么这个复合映射就没有意义,所以为了区别。

2025-11-03 20:20:37 509

原创 数学公式符号记录(自用版、持续更新)

待更新。

2025-10-31 15:11:05 337

原创 第五章 定积分 2.微积分基本公式

这一节的内容其实就是讲为什么式子∑i1n​fξi​Δxi​被叫做。设函数fx在区间ab上可积,并且设x为ab内任意一点,因为fx在区间ax上可积,故必然存在对应定积分∫ax​fxdx为了区分dx与积分上限x,我们将dx改成dt,即对应定积分是∫ax​ftdt显然∫ax​ftdt随着x的变化而变化,且对于任意x∈ab都有唯一∫ax​ftdt相对应,故我们令Φx∫。

2025-10-31 14:52:28 399

原创 扫描线例题3、4

给你一个长度为n的序列A,且告知A的值域是1c,即对任意项满足1≤Ai​≤c。现在给定m次查询,每次查询给出两个数LR,你需要回答AL​AL1​⋯AR​内有多少种数出现了至少两次。1≤ncm≤2×106,且1≤lr≤n。

2025-10-30 19:49:35 330

原创 第五章 定积分 1.定积分的概念与性质

例子的引入不仅为我们对定积分的几何含义做出铺垫,还让我们熟悉了如何用数学语言来描述定积分。设函数fxf(x)fx在ab[a,b]ab上有界,任意地向ab[a,b]ab中插入n−1n-1n−1个分点将区间ab[a,b]ab分成nnn个小区间ax1x1x2⋯xn−1bax1​x1​x2​⋯xn−1​b,其中ax0a=x_0ax0​bxnb=x_nbxn​。并设第iii。

2025-10-30 14:59:55 778

原创 扫描线例题2

考虑到每个满足条件的区间中都只有一个这样的数,我们可以枚举每个这样的数。真是一个非常妙的转换,当贡献的计算方式表示为乘积时,但是前面的所有作为答案的区间都可能会包含。作为区间只出现一次的数时,我们可以将。作为区间内只出现一次的数的区间个数是。作为区间内只出现一次的数的区间个数是。可以看做一个矩形的面积,这个矩形是以。,现在需要求有多少个区间满足区间内。所以这题被转换为了求矩形面积并!出现的位置全部提取出来。假设我们要求出所有以。

2025-10-28 19:58:11 1021

原创 扫描线例题1

天内所有的电影,每部电影仅在恰好第一次被观看时才能获得好看值(如果区间内该电影出现了两次,那么你无法获得该电影的好看值),请问该如何选择区间使得好看值之和最大?用线段树维护即可,但是这道题内存开得很紧,所以可以考虑用动态开点线段树,不去预开空间而是用。现在问题就转换为,求解前缀的最大子段和。天,每天会放映一部电影,第。维护一根扫描线,考虑扫到第。天时的答案,对于电影。

2025-10-28 19:57:38 1041

原创 树状数组求前缀 $\max$

回忆树状数组的定义,树状数组是一种能维护具有 可差分、可结合 特性的信息的数据结构。其中,可差分指的是一段区间的信息应该能被两段区间信息作差求出,可结合指的是一段区间信息应该能被若干个互不相交的区间拼凑得出。将信息进行二进制拆分,使得树状数组只需要花费维护 O(log⁡n)O(\log n)O(logn) 数量的信息的代价就能够表示出 O(n)O(n)O(n) 数量的信息。比如我们要求区间 1∼x1\sim x1∼x 的信息,不妨设 xxx 的二进制可以写成 2k1+2k2+⋯+2km2^{k_1}+2^{

2025-10-28 14:52:33 444

原创 树状数组维护DP——前缀最大值

给定一个n×m的网格图,设ij表示从上往下数第i行与从左往右数第j列的交点。有一辆公交车在11处,它每次只能向往右或下行驶,目的地是nm,给定k个公交站点,每个站点xi​yi​有pi​位乘客,请问公交车至多能载多少名乘客到达终点?

2025-10-28 14:51:48 1039

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除