关闭

基于演化博弈数据利用压缩感知方法进行网络重构

0.background 在工程和科学的许多领域,我们经常会遇到的问题是,目标网络是由联网的元素(节点)组成的,但是节点之间的相互作用或者说网络的拓扑结构是完全未知的。在这种情况下,我们利用基于时间序列从实验和观测中得到的数据中来重构网络的拓扑就是有价值和经济利益的。这就需要我们了解未知网络的动态演化过程或者需要大量连续时间上的振荡信号。但是对于社会,经济和生物科学网络来说,他们的节点之间的相互...
阅读(305) 评论(0)

聚类系数可调的无标度网络生成算法

0. BA无标度网络模型简单介绍: 实际网络的两个重要的特性:       (1)增长性:即网络的规模是不断的增长的,ER随机图和WS小世界模型中的网络的大小是固定       (2)优先连接(Preferential  attachment以下简称PA):新的节点更倾向于和那些具有较高的连接度的hub节点相连。这种现象也叫作“富者更富(Rich get richer)”或者是“马太效应”...
阅读(1251) 评论(9)

个性化推荐算法和二部图-论文学习

本文为学习论文《Bipartite network projection and personal recommendation》的简要备忘笔记。 0,一般来说,一个推荐系统由用户user和商品object组成,每一个用户会选择一些商品,记商品集合和用户集合分别如下:  ,    如果用户仅仅选择商品而不对其进行评价。那么推荐系统可以完全由一个n×m的邻接矩阵表示,其中如果用户ui选择过了商...
阅读(2056) 评论(0)

拉格朗日对偶性问题-《统计学习方法》学习笔记

0. 内容介绍         在约束最优化问题中, 常常利用拉个朗日对偶性将原始问题转化为对偶问题,通过解对偶问题而得到原始问题的解,该方法应用在很多的统计学习方法中。例如在上一篇文章中(http://blog.csdn.net/robin_xu_shuai/article/details/52791306)所说的最大熵模型。在学习最大熵模型中我们看到,需要求解满足所有已知条件并且使得熵最大的...
阅读(807) 评论(0)

逻辑斯谛回归与最大熵模型-《统计学习方法》学习笔记

0. 概述: Logistic回归是统计学中的经典分类方法,最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型, logistic回归模型与最大熵模型都是对数线性模型。 本文第一部分主要讲什么是logistic(逻辑斯谛)回归模型,以及模型的参数估计,使用的是极大对数似然估计以及梯度下降法,第二部分介绍什么是最大熵模型,首先介绍最大熵原理, 然后根据最大熵原理推...
阅读(4084) 评论(1)

《Higher-order organization of complex networks》-论文学习笔记

0.前言:        最近阅读了Benson等人发表在science上的论文《Higher-order organization of complex networks》,在该论文中作者提出了一种通用的框架,可在网络中基于高阶连接模式进行聚类。 和以往接触的聚类方法(K-means, 层次聚类, DBSCAN, 或者OPRICS)等不同的是: K-means等在对item进行聚类的时候,...
阅读(887) 评论(4)
    个人资料
    • 访问:70326次
    • 积分:1435
    • 等级:
    • 排名:千里之外
    • 原创:75篇
    • 转载:0篇
    • 译文:0篇
    • 评论:47条
    最新评论