【数据结构】堆 Heap

原创 2013年12月04日 15:11:43

1. 堆的定义:

堆(Heap) - 也叫做优先队列(Priority Queue);二叉堆是一个完全二叉树或近似完全二叉树。满足如下的两个属性:

1 父节点的键值总是大于或等于(小于或等于)它的任意一个子节点的键值(顺序性);

2 堆总是一个完全二叉树;

将根节点最大的堆叫做最大堆;根节点最小的堆叫做最小堆


2. 堆的存储:

可以采用数组来表示堆;我们使用下标1作为数组的开始;声明数组X[n + 1],空出元素X[0],根位于X[1],它的两个子节点分别位于X[2],X[3],... ...

堆的典型定义如下(数组X满足如下条件):

{

    root 节点索引:1

    left child(i)    当前节点i的左子节点索引:2 × i

    right child(i) 当前节点i的右子节点索引:2×i + 1

    parent(i)       当前节点i的父节点的索引值:i/2

}

示例如下:X[1, ... ... n]



3. 堆的操作:

两个关键的函数:siftup,siftdown:

3.1. siftup:

描述:现有数组X[1,... ..., n-1]为一个堆,插入一个新的元素在位置X[n]上,新的元素的键值可能小于其父节点,此时需将该节点向上调整,是X[1,... ... n]重新成为一个堆;


/**
 * @param newItem the new inserted item
 * @param n       the current index in the array X for the newItem, initially it is the last index of the array + 1
 */
void siftup(T newItem, int n)
{
    int currentIndex = n;
	
    for (int parentIndex = ParentIndex(currentIndex); parentIndex > 0 && newItem < X[parentIndex]; )
	{
	    X[currentIndex] = X[parentIndex];
		currentIndex = parentIndex;
		parentIndex = ParentIndex(parentIndex);
	}
}

3.2. siftdown:

描述:现有数组X[1,... ...n]为一个堆,给X[1]分配一个新的值,重新调整使X重新满足堆的条件;


/**
 * @param n the replaced node index, initially n = 1, replace the root node
 * @param newItem the new replaced value on X[n]
 */
void siftdown(int n, T newItem)
{
    int currentIndex = n;
	
	// If current node owns child node(s), check
    while (getLeftChildIndex(currentIndex) > heapSize)
	{
	    int leftChildIndex = getLeftChildIndex(currentIndex);
	    int rightChildIndex = getRightChildIndex(currentIndex);
	
	    // get the index whose item value is the less one.
        int minItemIndex = (rightChildIndex < heapSize) ? (X[leftChildIndex] < X[rightChildIndex] ? leftChildIndex : rightChildIndex) : (leftChildIndex);
		
		if (newItem > X[minItemIndex])
		{
		    X[currentIndex] = X[minItemIndex]; // swap value
			currentIndex = minItemIndex;
		}else
		{
		    // exit
			break;
		}
	}	
	X[currentIndex] = newItem;
}

3.3. 堆插入元素insert:

描述:每次插入都是将新数据放在数组的最后;然后向上调整使其重新满足堆条件;

void insert(T newItem)
{
    siftUp(newItem, heapSize);
}


3.4. 堆删除元素delete:

描述:堆中每次只能删除根节点X[1];为了便于重建堆,实际的操作是将最后一个数据的值赋给根节点,然后再向下调整,使其满足堆条件;

T delete()
{
    T deletedItem = X[1];
	
    heapSize -= 1;
    siftdown(1, X[n]);
	
    return deletedItem;
}

3.5. 堆排序:

描述:堆X[1, ... ... n]建好之后,X[1]为最小的元素;将X[1]取出,放在X[n]位置上,然后将原来的X[n]放在X[1]上,向下调整,得到新的堆X[1,... ... n - 1];然后将新堆的X[1]放在X[n - 1]上,X[n - 1]放到X[1]上,siftdown得到新的堆X[1, ... ... n-2];重复上面过程直到X[1]与X[2]交换为止;

void sort()
{
    for (int i = n; i > 1; i--)
	{
	    swap(X[1], X[i]);
	    heapSize -= 1; // reduce the heap size.
	    siftdown(1, X[1]); // current X[1] is the new value which is the X[i] before the swaption.
	}
}

3.6. 堆操作的动态演示:

http://www.benfrederickson.com/2013/10/10/heap-visualization.html


4. C++ STL中的堆操作:



相关文章推荐

数据结构之堆(Heap)的实现

堆数据结构是一种数组对象,它可以被视为一棵完全二叉树结构,所以堆也叫做二叉堆。二叉堆满足二个特性:  1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。  2.每个结点的左子树和右子树...

数据结构:堆Heap

数据结构之堆

数据结构-堆(heap)

堆(heap)也被称为优先队列(priority queue)。队列中允许的操作是先进先出(FIFO),在队尾插入元素,在队头取出元素。而堆也是一样,在堆底插入元素,在堆顶取出元素,但是堆中元素的排列...

内存中堆(heap)和栈(stack)的区别(非数据结构中的堆和栈)

在进行C/C++编程时,需要程序员对内存的了解比较精准。经常需要操作的内存可分为以下几个类别:       1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其...
  • tonywgx
  • tonywgx
  • 2011年10月31日 13:52
  • 1059

数据结构-堆(Heap)

#include #include using namespace std; template struct Bigger { bool operator()(T left, T right...

浅谈数据结构—堆(heap)

提出这样一个问题: 输入一个序列a[1..n]进行m次操作 ·操作1:将x插入到数列中 ·操作2:输出最小值 ·操作3:将最小值删除 (n,m 先尝试按照普及组的思路去做 方法1:无序表维护 ·插入O...

数据结构之堆Heap

1. 概述 堆(也叫优先队列),是一棵完全二叉树,它的特点是父节点的值大于(小于)两个子节点的值(分别称为大顶堆和小顶堆)。它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列...

数据结构之堆(Heap)及其用途

图、码、文 介绍 优先队列之堆 优先队列;最大树;最大堆、最小堆的插入、删除、初始化; 堆的用途:堆排序;haffman编码;haffman tree 解决优化问题...

Heap——数据结构之堆

数据结构——堆

【数据结构与算法基础】优先队列(二叉堆实现) / Priority Queue implemented by binary heap

优先队列, 二叉堆, Priority Queue, Binary Heap
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【数据结构】堆 Heap
举报原因:
原因补充:

(最多只允许输入30个字)