Bagging部分比较简单,算法和代码放到一起写了。
一、Bagging算法
严格来看Bagging并不能算是一种分类算法,Bagging和Boosting一样,是一种组合基本分类器的方法,也就是使用多个基分类器来获取更为强大的分类器,其核心思想是有放回的抽样。
Bagging算法的训练流程:
1、从样本集中有放回的抽样M个样本。
2、用这M个样本训练基分类器C。
3、重复这个过程X次,得到若干个基分类器。
Bagging算法的预测流程:
1、对于新传入实例A,用这X个新分类器得到一个分类结果的列表。
2、若待分类属性是数值型(回归),求这个列表的算数平均值作为结果返回。
3、若待分类属性是枚举类型(分类),按这个列表对分类结果进行投票,返回票数最高的。
二、Weka代码实现
(1)基分类器
Weka中的默认基分类器使用的是REPTree,也就是Fast decision tree learner,至于这个具体是个什么,后面我再写文章进行分析。
public Bagging() {
m_Classifier = new weka.classifiers.trees.REPTree();
}
整个BuildClassifier都是围绕标m_CalcOutOfBag来展开的,这个m_CalcOutOfBag标识的意思是:是否计算OutofBag的错误比例。
假如我们对训练集M进行抽样,抽样的数量和M的数量是一样的,那么肯定会有一些样本并没有被抽到(为什么?因为是有放回的抽样),这个标识就是用来评测这些没抽到的样本的准确率,如果没有这个标,那么这个准确率到后面就