从floyd算法学习动态规划

原创 2010年06月06日 22:40:00

    floyd的相关概念看这里

    floyd的代码实现其实很简单:

     

    这里我一直好奇的是这三个漂亮的循环是怎么完成最终正确的结果的,如何证明它们是正确的。直到看了这里的解析,才算弄懂了。

    floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在),floyd算法加入了这个概念

    Ak(i,j):表示从i到j中途不经过索引比k大的点的最短路径

    这个限制的重要之处在于,它将最短路径的概念做了限制,使得该限制有机会满足迭代关系,这个迭代关系就在于研究:假设Ak(i,j)已知,是否可以借此推导出Ak-1(i,j)。

    假设我现在要得到Ak(i,j),而此时Ak(i,j)已知,那么我可以分两种情况来看待问题:1. Ak(i,j)沿途经过点k;2. Ak(i,j)不经过点k。如果经过点k,那么很显然,Ak(i,j) = Ak-1(i,k) + Ak-1(k,j),为什么是Ak-1呢?因为对(i,k)和(k,j),由于k本身就是源点(或者说终点),加上我们求的是Ak(i,j),所以满足不经过比k大的点的条件限制,且已经不会经过点k,故得出了Ak-1这个值。那么遇到第二种情况,Ak(i,j)不经过点k时,由于没有经过点k,所以根据概念,可以得出Ak(i,j)=Ak-1(i,j)。现在,我们确信有且只有这两种情况---不是经过点k,就是不经过点k,没有第三种情况了,条件很完整,那么是选择哪一个呢?很简单,求的是最短路径,当然是哪个最短,求取哪个,故得出式子:

    Ak(i,j) = min( Ak-1(i,j), Ak-1(i,k) + Ak-1(k,j) )

    现在已经得出了Ak(i,j) = Ak-1(i,k) + Ak-1(k,j)这个递归式,但显然该递归还没有一个出口,也就是说,必须定义一个初始状态,事实上,这个初始状态取决于索引k是从0开始还是从1开始,上面的代码是C写的,是以0为开始索引,但一般描述算法似乎习惯用1做开始索引,如果是以1为开始索引,那么初始状态值应设置为A0了,A0(i,j)的含义不难理解,即从i到j的边的距离。也就是说,A0(i,j) = cost(i,j) 。由于存在i到j不存在边的情况,也就是说,在这种情况下,cost(i,j)无限大,故A0(i,j) = oo(当i到j无边时)

    到这里,已经列出了求取Ak(i,j)的整个算法了,但是,最终的目标是求dist(i,j),即i到j的最短路径,如何把Ak(i,j)转换为dist(i,j)?这个其实很简单,当k=n(n表示索引的个数)的时候,即是说,An(i,j)=dist(i,j)。那是因为当k已经最大时,已经不存在索引比k大的点了,那这时候的An(i,j)其实就已经是i到j的最短路径了。

    从floyd算法中不难看出,要设计一个好的动态规划算法,首先需要研究是否能把目标进行重新诠释(这一步是最关键最富创造力的一步),转化为一个可以被分解的子目标,如果可以转化,就要想办法寻找数学等式使目标收敛为子目标,如果这一步可以实现了,还需要研究该递归收敛式的出口,即初始状态是否明确(这一步往往已经简单了)。

    看了一些网文关于floyd的资料,发现温故知新,还是从中补漏了之前没有留意的知识。

以动态规划的思路理解Floyd算法

以动态规划的思路理解Floyd算法 本文纯粹是自己的一些想法,如果有不对的请各位大牛指教         通常,想到计算最短路径时,由于是求最优路径,多会想到DP算法,但是若是以每一个点作为一个划分,...

013--Floyd算法-动态规划-《算法设计技巧与分析》M.H.A学习笔记

多源最短路:有向图,求从每个顶点到其他所有顶点的最短距离。

floyd算法与动态规划

floyd的代码实现其实很简单:     [cpp] view plaincopy void floyd()   {       for(k=0;k ...
  • ZH___ZH
  • ZH___ZH
  • 2014年10月26日 13:20
  • 899

动态规划--Floyd算法

  • 2014年11月11日 19:30
  • 600KB
  • 下载

从floyd算法学习动态规划

从floyd算法学习动态规划        2010-06-06 22:402824人阅读评论(1)收藏举报 算法语言iniooc     floyd的相关概念看这里。     flo...

动态规划---->每对定点之间的最短路径 Floyd(弗洛伊德)算法

最短路径 1、问题描述 设G = ( V, E)是一个有n 个结点的有向图。又设C 是G 的成本邻接矩阵, 其中C(i,i)= 0 , 1≤i≤n; 当〈i,j〉∈E (G)时, C( i,j) ...

动态规划之所有点对的最短路径问题(Floyd算法)

d

【动态规划】每对顶点之间的最短路径之Floyd-Warshall算法

《算法导论》25.2. 《计算机算法(C++版)》5.3. 当然这个算法的实现是相当简单的,只使用了三重循环,时间复杂度为O(n^3)。但是重点是算法背后的思想,一般教材都把这个算法当做典型的图算法...

多源有权图的最短路径 floyd算法(动态规划能解决负权边)7.1.3

核心代码只有5行呀 for(int k=0;kNv;k++) for(int i=0;iNv;i++) for(int j=0;jNv;j++) if...

动态规划的Warshall和Floyd算法:

动态规划的Warshall和Floyd算法: Warshall算法 简单的讲就是 伪代码: 代码:package Section8; /*第八章 动态规划 有向图传递闭包的Warshal...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:从floyd算法学习动态规划
举报原因:
原因补充:

(最多只允许输入30个字)