从floyd算法学习动态规划

原创 2010年06月06日 22:40:00

    floyd的相关概念看这里

    floyd的代码实现其实很简单:

     

    这里我一直好奇的是这三个漂亮的循环是怎么完成最终正确的结果的,如何证明它们是正确的。直到看了这里的解析,才算弄懂了。

    floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在),floyd算法加入了这个概念

    Ak(i,j):表示从i到j中途不经过索引比k大的点的最短路径

    这个限制的重要之处在于,它将最短路径的概念做了限制,使得该限制有机会满足迭代关系,这个迭代关系就在于研究:假设Ak(i,j)已知,是否可以借此推导出Ak-1(i,j)。

    假设我现在要得到Ak(i,j),而此时Ak(i,j)已知,那么我可以分两种情况来看待问题:1. Ak(i,j)沿途经过点k;2. Ak(i,j)不经过点k。如果经过点k,那么很显然,Ak(i,j) = Ak-1(i,k) + Ak-1(k,j),为什么是Ak-1呢?因为对(i,k)和(k,j),由于k本身就是源点(或者说终点),加上我们求的是Ak(i,j),所以满足不经过比k大的点的条件限制,且已经不会经过点k,故得出了Ak-1这个值。那么遇到第二种情况,Ak(i,j)不经过点k时,由于没有经过点k,所以根据概念,可以得出Ak(i,j)=Ak-1(i,j)。现在,我们确信有且只有这两种情况---不是经过点k,就是不经过点k,没有第三种情况了,条件很完整,那么是选择哪一个呢?很简单,求的是最短路径,当然是哪个最短,求取哪个,故得出式子:

    Ak(i,j) = min( Ak-1(i,j), Ak-1(i,k) + Ak-1(k,j) )

    现在已经得出了Ak(i,j) = Ak-1(i,k) + Ak-1(k,j)这个递归式,但显然该递归还没有一个出口,也就是说,必须定义一个初始状态,事实上,这个初始状态取决于索引k是从0开始还是从1开始,上面的代码是C写的,是以0为开始索引,但一般描述算法似乎习惯用1做开始索引,如果是以1为开始索引,那么初始状态值应设置为A0了,A0(i,j)的含义不难理解,即从i到j的边的距离。也就是说,A0(i,j) = cost(i,j) 。由于存在i到j不存在边的情况,也就是说,在这种情况下,cost(i,j)无限大,故A0(i,j) = oo(当i到j无边时)

    到这里,已经列出了求取Ak(i,j)的整个算法了,但是,最终的目标是求dist(i,j),即i到j的最短路径,如何把Ak(i,j)转换为dist(i,j)?这个其实很简单,当k=n(n表示索引的个数)的时候,即是说,An(i,j)=dist(i,j)。那是因为当k已经最大时,已经不存在索引比k大的点了,那这时候的An(i,j)其实就已经是i到j的最短路径了。

    从floyd算法中不难看出,要设计一个好的动态规划算法,首先需要研究是否能把目标进行重新诠释(这一步是最关键最富创造力的一步),转化为一个可以被分解的子目标,如果可以转化,就要想办法寻找数学等式使目标收敛为子目标,如果这一步可以实现了,还需要研究该递归收敛式的出口,即初始状态是否明确(这一步往往已经简单了)。

    看了一些网文关于floyd的资料,发现温故知新,还是从中补漏了之前没有留意的知识。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

访问vector元素方法的效率比较

相信会来看这篇博客的人,应该都认识vector了,所以我就直接上测试代码了,我是在vs2015中测试的:#include #include #include using namespace std;i...

Java - concurrent包详解

我们都知道,在JDK1.5之前,Java中要进行业务并发时,通常需要有程序员独立完成代码实现,当然也有一些开源的框架提供了这些功能,但是这些依然没有JDK自带的功能使用起来方便。而当针对高质量Java...

牛客网刷题笔记--树

1.一棵具有n个结点的完全二叉树的树高度(深度)是 A.[logn]+1 B.logn+1 C.[logn] D.logn-1 答案:A。二叉树的性质4。[]向下取整...

编译期多态和运行期多态

什么是多态所谓的多态是通过一个单一的标识符支持不同的特定行为的能力。多态的分类从绑定时间 静态多态 (编译期多态) 动态多态 (运行期多态) 从表现的形式 虚函数 重载 模板 转换 (宏定义) 今天...

子集和问题

转载于:http://blog.csdn.net/clove_unique      子集和问题 【问题描述】     子集和问题的一个实例为〈S,t〉。其中,S={ x1, x2,…, xn...

floyd算法:我们真的明白floyd吗?

图论里一个很重要的问题是最短路径问题. 这个问题,在离散数学课上会考,数据结构与算法课上会考,图论课上会考,计算机网络里会考.... 解决最短路径问题有几个出名的算法: 1.dijkstra算法,最经...

Prim算法求最小生成树

cost[i][j]存i和j之间的距离,vis[i]记录i点是否被访问,lowc[j]存所有与j点连接的边的最小的权值。 每次找最小的lowc[j]。 然后。。。最小生成树 #include ...

结点对最短路径之Floyd算法原理详解及实现

上两篇博客介绍了计算单源最短路径的Bellman-Ford算法和Dijkstra算法。Bellman-Ford算法适用于任何有向图,即使图中包含负环路,它还能报告此问题。Dijkstra算法运行速度比...

HDU-2222 Keywords Search

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2222 题目大意: 给你很多个单词,然后给你一篇文章,问给出的单词在文章中出现的次数。 解题思路:...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)