Struts2拦截器


1、Java类中创建一个interceptor

首先在创建一个class类,继承AbstractInterceptor的抽象类,实现intercept方法

public class MyInterceptor extends AbstractInterceptor {
	@Override
	public String intercept(ActionInvocation arg0) throws Exception {
		return null;
	}

}

2、Struts.xml文件中进行配置

A)、定义拦截器

<interceptors>
	<interceptor name="拦截器名" class="拦截器的包名"></interceptor>
	<interceptor-stack name="拦截器栈名">
		<interceptor-ref name="defaultStack"></interceptor-ref>
		<interceptor-ref name="拦截器名"></interceptor-ref>
	</interceptor-stack>
</interceptors>

PsdefaultStack是默认的拦截器名称,不可更改

B)、使用拦截器

<default-interceptor-ref name="拦截器栈名"></default-interceptor-ref>


除此之外,还有一种不定义拦截器栈的方式


A)、定义拦截器

<interceptors>
	<interceptor name="拦截器名" class="拦截器的包名"></interceptor>
</interceptors>

B)、使用拦截器

<action name="test" class="com.zuxia.action.TestAction">
	<interceptor-ref name="defaultStack"></interceptor-ref>
	<interceptor-ref name="拦截器名"></interceptor-ref>
	<result>/success.jsp</result>
</action>


注意:

1、在自定义拦截器后,默认的拦截器将会失效;

2、拦截器采用的是就近原则,先从局部查找,然后才是全局。

3、 指定拦截器

指定拦截器,和普通的拦截器大同小异

 

首先,创建一个class类,继承MethodFilterInterceptor抽象类,实现其方法


public class MeInterceptor extends MethodFilterInterceptor {

	@Override
	protected String doIntercept(ActionInvocation arg0) throws Exception {
		System.out.println("这是指定拦截");
		arg0.invoke();
		return null;
	}
	
}


然后,在struts.xml文件中配置,配置起来也和原来的差不多

<interceptor name="MeInterceptor" class="com.test.intercept.MeInterceptor">
	<param name="includeMethods">add,update</param> //<span style="font-family: 宋体;">这是用指定那些拦截器可用</span>
	<param name="excludeMethods">add,update</param>//<span style="font-family: 宋体;">这是指那些拦截器不可用</span>
</interceptor>

4、重复表单提交

a) 、跳转的时候,不再用转发的方式,用重定向;

b) 、使用token拦截器


1、JSP页面中,使用Struts2的标签库

<%@ taglib uri="/struts-tags" prefix="s"%>


然后在form表单中使用<s:token>标签

<form action="/Struts2_test/tokntest">
    	<s:token></s:token>
    	测试:<input type="text" name="test">
    	<input type="submit" value="提交">
</form>


2、struts.xml文件中配置

<action name="tokntest" class="com.test.action.TokeAction">
	<result name="invalid.token">/error.jsp</result>
	<result>/success.jsp</result>
</action>


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值