Openssl中大数以及RSA相关函数介绍

原创 2005年04月28日 20:06:00

主要介绍了openssl之RSA相关函数,这个对学习和实现RSA算法比较有帮助。
 

RSA基本结构

struct

 

     {

 

      int pad;

 

      long version;

 

      const RSA_METHOD *meth;

 

      ENGINE *engine;

 

      BIGNUM *n;         n=p*q

 

      BIGNUM *e;         公开的加密指数,经常为65537(ox10001)

 

      BIGNUM *d;         私钥

 

      BIGNUM *p;         大素数p

 

      BIGNUM *q;         大素数q

 

      BIGNUM *dmp1;      d mod (p-1)

 

      BIGNUM *dmq1;      d mod (q-1)

 

      BIGNUM *iqmp;      (inverse of q) mod p

 

      int references;

 

      int flags;

 

        // ...

 

      }RSA;

 

2.初始化函数

RSA * RSA_new(void);初始化一个RSA结构

 

 void RSA_free(RSA *rsa);释放一个RSA结构

 

3RSA私钥产生函数

RSA *RSA_generate_key(int num, unsigned long e,void (*callback)(int,int,void *), void *cb_arg);产生一个模为num位的密钥对,e为公开的加密指数,一般为65537(ox10001),假如后两个参数不为NULL,将有些调用。在产生密钥对之前,一般需要指定随机数种子

 

4.判断位数函数

 int RSA_size(const RSA *rsa);返回RSA模的位数,他用来判断需要给加密值分配空间的大小

 

 int RSA_check_key(RSA *rsa);他测试p,q是否为素数,n=p*q,d*e = 1 mod (p-1*q-1), dmp1, dmq1, iqmp是否均设置正确了。

 

5RSARSA_METHOD函数

  了解RSA的运算那就必须了解RSA_METHOD,下面我们先看看RSA_METHOD结构

 

typedef struct rsa_meth_st

 

        {

 

        const char *name;

 

        int (*rsa_pub_enc)(int flen,const unsigned char *from,

 

            unsigned char *to,RSA *rsa,int padding);

 

        int (*rsa_pub_dec)(int flen,const unsigned char *from,

 

             unsigned char *to,RSA *rsa,int padding);

 

        int (*rsa_priv_enc)(int flen,const unsigned char *from,

 

                unsigned char *to, RSA *rsa,int padding);

 

        int (*rsa_priv_dec)(int flen,const unsigned char *from,

 

                unsigned char *to,RSA *rsa,int padding);

 

        int (*rsa_mod_exp)(BIGNUM *r0,const BIGNUM *I,RSA *rsa);        int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,

 

                const BIGNUM *m, BN_CTX *ctx,BN_MONT_CTX *m_ctx);

 

        int (*init)(RSA *rsa);          /* called at new */

 

        int (*finish)(RSA *rsa);        /* called at free */

 

        int flags;              /* RSA_METHOD_FLAG_* things */

 

        char *app_data;                  /* may be needed! */

 

        int (*rsa_sign)(int type,const unsigned char *m, unsigned int m_length,unsigned char *sigret, unsigned int *siglen, const RSA *rsa);

 

        int (*rsa_verify)(int dtype,const unsigned char *m, unsigned int m_length,unsigned char *sigbuf, unsigned int siglen, const RSA *rsa);

 

        } RSA_METHOD;

 

const RSA_METHOD *RSA_PKCS1_SSLeay(void);

 

const RSA_METHOD *RSA_null_method(void);

 

主要有上面两个函数。第二个函数是定义了RSA_null才会调用,其实要调用这个函数以后几乎什么都不能干,只是输出错误信息。第一个是常用的METHOD,下面我们看看它的定义

 

const RSA_METHOD *RSA_PKCS1_SSLeay(void)

 

        {

 

        return(&rsa_pkcs1_eay_meth);

 

        }

 

static RSA_METHOD rsa_pkcs1_eay_meth={

 

        "Eric Young's PKCS#1 RSA",

 

        RSA_eay_public_encrypt,

 

        RSA_eay_public_decrypt, /* signature verification */

 

        RSA_eay_private_encrypt, /* signing */

 

        RSA_eay_private_decrypt,

 

        RSA_eay_mod_exp,

 

        BN_mod_exp_mont,

 

        RSA_eay_init,

 

        RSA_eay_finish,

 

        0, /* flags */

 

        NULL,

 

        0, /* rsa_sign */

 

        0  /* rsa_verify */

 

        };

 

由此可以看出,一般rsa->meth-> rsa_pub_enc对应于RSA_eay_public_encrypt,刚开始看openssl的时候最难得就是这个指向函数的指针,根本不知道rsa->meth-> rsa_pub_enc对应于哪里。在openssl里面这种指针很多,到以后也能够看到。下面是设置meth的一些函数应该都很容易理解

 

void RSA_set_default_method(const RSA_METHOD *meth);

 

 const RSA_METHOD *RSA_get_default_method(void);

 

 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);

 

 const RSA_METHOD *RSA_get_method(const RSA *rsa);

 

 int RSA_flags(const RSA *rsa);

 

 RSA *RSA_new_method(ENGINE *engine);

 

6.加解密函数

int RSA_public_encrypt(int flen, unsigned char *from,

 

    unsigned char *to, RSA *rsa, int padding);

 

 int RSA_private_decrypt(int flen, unsigned char *from,

 

    unsigned char *to, RSA *rsa, int padding);

 

 int RSA_private_encrypt(int flen, unsigned char *from,

 

    unsigned char *to, RSA *rsa,int padding);

 

 int RSA_public_decrypt(int flen, unsigned char *from,

 

unsigned char *to, RSA *rsa,int padding);

 

 有了第4节的基础,那理解这些加解密函数就容易了,假如

 

RSA_set_method(rsa, RSA_PKCS1_SSLeay())的话,那RSA_public_encrypt对应于RSA_eay_public_encrypt,这样我们就可以调试公钥加密的过程了。Flen为要加密信息的长度,from为需要加密的信息,to为加密后的信息,一般to至少要申请BN_num_bytes(rsa->n)大的空间。Padding是采取的加解密方案。PKCS#1中主要提供了两种加密方案,RSAEX-OAEP和PSAES-PKCS1-v1_5(反正就是两种加密过程了,有点复杂,它主要是先对先对需要加密的数据进行了编码,比如RSAES-OAEP采用EME-OAEP编码,再进行加密或解密)。Openssl中已经编好了编码的函数:

 

case RSA_PKCS1_PADDING:

 

    i=RSA_padding_add_PKCS1_type_2(buf,num,from,flen);

 

#ifndef OPENSSL_NO_SHA

 

case RSA_PKCS1_OAEP_PADDING:        i=RSA_padding_add_PKCS1_OAEP(buf,num,from,flen,NULL,0);

 

#endif

 

case RSA_SSLV23_PADDING:

 

    i=RSA_padding_add_SSLv23(buf,num,from,flen);

 

 case RSA_NO_PADDING:

 

    i=RSA_padding_add_none(buf,num,from,flen);

 

等上面编好码后,就调用BN_mod_exp_mont来进行模幂了。最后得出值,这也就是具体的加密和解密过程。在这里还可以发现,加密时输入的rsa有两种方式,一是p,q,...为NULL,只有rsa->d,和rsa->n不为空,这样就直接用rsa->d和rsa->n进行模幂计算,假如p,q.....都不为空的话,他会调用中国剩余定理来进行加密。

 

7.签名函数

int RSA_sign(int type, unsigned char *m, unsigned int m_len,

 

    unsigned char *sigret, unsigned int *siglen, RSA *rsa);

 

int RSA_verify(int type, unsigned char *m, unsigned int m_len,

 

    unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

 

其实签名其实和用私钥加密差不多是一回事,所以签名函数最终调用的就是私钥加密的函数,在openssl中这个签名函数很少单独拿出来用的,都是为了给EVP_SignFinal来调用的。所以假如是利用RSA进行签名的话,RSA_private_encrypt,BN_mod_exp_mont是最基本的,所有的都需要调用他,区别无非就在于在需要签名的信息上做了一下处理(一般将需要签名的信息求取摘要值得到m)

 

8.写入文件函数

 int RSA_print(BIO *bp, RSA *x, int offset);

 

 int RSA_print_fp(FILE *fp, RSA *x, int offset);offset是为了调整输出格式的,随意一个数都可以(例如2,12,16。。)

 

9.其他

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);

 

void RSA_blinding_off(RSA *rsa);

 

为了防止时间攻击,openssl还在签名的时候产生一个随机因子,附加在私钥上。

 

  int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,unsigned int m_len, unsigned char *sigret, unsigned int *siglen,RSA *rsa);

 

  int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,RSA *rsa);

 

用私钥对八元组串进行签名,原理同RSA_sign

Openssl有关大数运算函数介绍- -

                                      

主要介绍Openssl中的有关大数运算函数,这个对于以后的RSA研究和实现比较有价值
 

1.初始化函数

 

BIGNUM *BN_new(void);    新生成一个BIGNUM结构

 

void BN_free(BIGNUM *a);   释放一个BIGNUM结构,释放完后a=NULL;

 

void BN_init(BIGNUM *);    初始化所有项均为0,一般为BN_ init(&c)

 

void BN_clear(BIGNUM *a);  将a中所有项均赋值为0,但是内存并没有释放

 

void BN_clear_free(BIGNUM *a); 相当与将BN_free和BN_clear综合,要不就赋值0,要不就释放空间。

 

2.上下文情景函数,存储计算中的中间过程

BN_CTX *BN_CTX_new(void);申请一个新的上下文结构

 

void BN_CTX_init(BN_CTX *c);将所有的项赋值为0,一般BN_CTX_init(&c)

 

  void BN_CTX_free(BN_CTX *c);释放上下文结构,释放完后c=NULL;

 

3.复制以及交换函数

  BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);将b复制给a,正确返回a,错误返回NULL

 

  BIGNUM *BN_dup(const BIGNUM *a);新建一个BIGNUM结构,将a复制给新建结构返回,错误返回NULL

 

  BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);交换a,b

 

4.取位函数

 

 int BN_num_bytes(const BIGNUM *a);返回a的位数,大量使用

 

 int BN_num_bits(const BIGNUM *a);

 

 int BN_num_bits_word(BN_ULONG w);他返回有意义比特的位数,例如0x00000432 为11。

 

5.基本计算函数

 

 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);r=a+b

 

 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);r=a-b

 

 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);r=a*b

 

 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);r=a*a,效率高于bn_mul(r,a,a)

 

 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,

 

         BN_CTX *ctx);d=a/b,r=a%b

 

 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);r=a%b

 

 int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);r=abs(a%b)

 

 int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

 

         BN_CTX *ctx);r=abs((a+b)%m))

 

 int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

 

         BN_CTX *ctx); r=abs((a-b)%m))

 

 int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

 

         BN_CTX *ctx); r=abs((a*b)%m))

 

 int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); r=abs((a*a)%m))

 

 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);r=pow(a,p)

 

 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,

 

         const BIGNUM *m, BN_CTX *ctx); r=pow(a,p)%M

 

 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);r=a,b最大公约数

 

 int BN_add_word(BIGNUM *a, BN_ULONG w);

 

 int BN_sub_word(BIGNUM *a, BN_ULONG w);

 

 int BN_mul_word(BIGNUM *a, BN_ULONG w);

 

 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);

 

 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

 

 BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,

 

           BN_CTX *ctx);模逆,((a*r)%n==1).

 

 

 

6.比较函数

 int BN_cmp(BIGNUM *a, BIGNUM *b);   -1 if a < b, 0 if a == b and 1 if a > b.

 

 int BN_ucmp(BIGNUM *a, BIGNUM *b);  比较a,b觉得值,返回值和上同。

 

 int BN_is_zero(BIGNUM *a);

 

 int BN_is_one(BIGNUM *a);

 

 int BN_is_word(BIGNUM *a, BN_ULONG w);

 

 int BN_is_odd(BIGNUM *a);        上面四个返回1,假如条件成立,否则将返回0

 

7.设置函数

 int BN_zero(BIGNUM *a);  设置a为0

 

 int BN_one(BIGNUM *a);   设置a为1

 

 const BIGNUM *BN_value_one(void); 返回一个为1的大数

 

 int BN_set_word(BIGNUM *a, unsigned long w); 设置a为w

 

 unsigned long BN_get_word(BIGNUM *a); 假如a能表示为long型,那么返回一个long型数

 

8.随机数函数

 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);产生一个加密用的强bits的伪随机数,若top=-1,最高位为0,top=0, 最高位为1,top=1,最高位和次高位为1,bottom为真,随机数为偶数 

 

 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);产生一个伪随机数,应用于某些目的。

 

int BN_rand_range(BIGNUM *rnd, BIGNUM *range);产生的0<rnd<range

 

 int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);同上面道理

 

9.产生素数函数

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int safe, BIGNUM *add,

 

         BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);产生一个bits位的素数,后面几个参数都可以为NULL

 

 int BN_is_prime(const BIGNUM *p, int nchecks,

 

         void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);

 

判断是否为素数,返回0表示成功,1表示错误概率小于0。25,-1表示错误

 

10.位数函数

 int BN_set_bit(BIGNUM *a, int n);将a中的第n位设置为1,假如a小于n位将扩展

 

 int BN_clear_bit(BIGNUM *a, int n);将a中的第n为设置为0,假如a小于n位将出错

 

 int BN_is_bit_set(const BIGNUM *a, int n);测试是否已经设置,1表示已设置

 

 int BN_mask_bits(BIGNUM *a, int n);将a截断至n位,假如a小于n位将出错

 

 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);a左移n位,结果存于r

 

 int BN_lshift1(BIGNUM *r, BIGNUM *a); a左移1位,结果存于r

 

 int BN_rshift(BIGNUM *r, BIGNUM *a, int n); a右移n位,结果存于r

 

 int BN_rshift1(BIGNUM *r, BIGNUM *a); a左移1位,结果存于r

 

11.与字符串的转换函数

int BN_bn2bin(const BIGNUM *a, unsigned char *to);将abs(a)转化为字符串存入to,to的空间必须大于BN_num_bytes(a)

 

 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);将s中的len位的正整数转化为大数

 

 char *BN_bn2hex(const BIGNUM *a);转化为16进制字符串

 

 char *BN_bn2dec(const BIGNUM *a);转化为10进制字符串

 

 int BN_hex2bn(BIGNUM **a, const char *str);同上理

 

 int BN_dec2bn(BIGNUM **a, const char *str);同上理

 

 int BN_print(BIO *fp, const BIGNUM *a);将大数16进制形式写入内存中

 

 int BN_print_fp(FILE *fp, const BIGNUM *a); 将大数16进制形式写入文件

 

 int BN_bn2mpi(const BIGNUM *a, unsigned char *to);

 

 BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

 

12.其他函数

下面函数可以进行更有效率的模乘和模除,假如在重复在同一模下重复进行模乘和模除计算,计算r=(a*b)%m 利用了recp=1/m

 

BN_RECP_CTX *BN_RECP_CTX_new(void);

 

 void BN_RECP_CTX_init(BN_RECP_CTX *recp);

 

 void BN_RECP_CTX_free(BN_RECP_CTX *recp);

 

 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

 

 int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,

 

 BN_RECP_CTX *recp, BN_CTX *ctx);

 

下面函数采用蒙哥马利算法进行模幂计算,可以提高效率,他也主要应用于在同一模下进行多次幂运算

 

BN_MONT_CTX *BN_MONT_CTX_new(void);

 

 void BN_MONT_CTX_init(BN_MONT_CTX *ctx);

 

 void BN_MONT_CTX_free(BN_MONT_CTX *mont);

 

 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);

 

 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

 

 int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,

 

         BN_MONT_CTX *mont, BN_CTX *ctx);

 

 int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

 

         BN_CTX *ctx);

 

 int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

 

         BN_CTX *ctx);

利用Openssl进行RSA加密签名算法

   加密(签名)的过程是(M的e次方)mod n,在这里我们把消息M假定为一个数字,但实际上消息一般为字符串,所以必须有一个将字符串转化为数字的规则,并且要让这个数字的大小和n相当(也不能比n大)。...
  • sagely
  • sagely
  • 2005年04月28日 20:34
  • 4391

Openssl 之大数运算函数 BN

 主要介绍Openssl中的有关大数运算函数,这个对于RSA研究和实现比较有价值   1.初始化函数   BIGNUM *BN_new(void);    新生成一个BIGNUM结构...

Openssl中大数以及RSA相关函数介绍

Openssl中大数以及RSA相关函数介绍 RSA基本结构 struct      {       int pad;       long version;      ...

Openssl有关大数运算函数介绍

Ref URL: http://blog.sina.com.cn/s/blog_4f51dac40100u1na.html 主要介绍Openssl中的有关大数运算函数,这个对于以后的RSA研究和...
  • kimwu
  • kimwu
  • 2013年11月07日 16:48
  • 1395

Openssl有关大数运算函数介绍

Openssl有关大数运算函数介绍 作者:sagely2005-02-25 20:49分类:默认分类标签: 主要介绍Openssl中的有关大数运算函数,这个对于以后的RSA研究和实现比...
  • lionzl
  • lionzl
  • 2013年05月19日 00:10
  • 511

openssl 相关的rsa与sha1算法签名与验证

openssl是一个功能强大的工具包,它集成了众多密码算法及实用工具。我们即可以利用它提供的命令台工具生成密钥、证书来加密解密文件,也可以在利用其提供的API接口在代码中对传输信息进行加密。 R...

非对称加密算法之RSA介绍及OpenSSL中RSA常用函数使用举例

非对称加密算法之RSA介绍及OpenSSL中RSA常用函数使用举例!

Openssl 之大数运算函数 BN

主要介绍Openssl中的有关大数运算函数,这个对于RSA研究和实现比较有价值   1.初始化函数   BIGNUM *BN_new(void);    新生成一个BIGNUM结构  ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Openssl中大数以及RSA相关函数介绍
举报原因:
原因补充:

(最多只允许输入30个字)