二分法

原创 2016年08月30日 21:05:59

1.特点及概念介绍

    下面给大家讲解一下"二分法查找"这个java基础查找算法,那么什么是二分法呢?其实所谓的"二分法",就是一分为二的意思,综合起来理解就是一分为二的查找,但大家记住了,二分法是建立在"已经按顺序排好"的基础条件上,如果大家把这个二分法查找理解清楚了,那么会有助于你更好的理解快速排序,下面我就罗列出该算法的特点:

    1.定义起始位置start(0角标),定义末位置end(lenght-1位置,即最后一位)
    2.无限循环的查找一个值,先看看该值是不是在中间mid角标,mid=(star+end)/2
    3.如果该值大于mid角标对应值,那么start变成mid的右边一位,如果小于,那么end就变成mid的左边一位,这样会极其的高效.
    5.找到值就返回值或打印,找不着也返回-1或打印,并停止循环.

2.图文描述过程

这里写图片描述


现有需求:

1.有一个已经排列好顺序的从小到大的数组.
2.请查询一个数字所在的角标位置.
3.如果元素不存在,请给出如果插入,那么应该插入的位置.

3.代码详情

public class Demo04 {
    public static void main(String[] args) {
        int[] ints = { 1, 3, 5, 7, 9, 11, 14 };
        find(ints, 3);
        find(ints, 14);
        find(ints, 6);
    }
    /**
     * 如果找不到,那么求应该插入的位置
     */
    private static void find(int[] ints, int i) {
        // int index = Arrays.binarySearch(ints, i);
        // System.out.println(index);//找不到返回负数
        int start = 0;
        int end = ints.length - 1;

        while (true) {
            int mid = (start + end) / 2; // 注意中间是两者之和的一半
            if (i == ints[mid]) {
                System.out.println("index = " + mid);// 正好找到打印角标,停止;
                break;
            } else {
                if (i < ints[mid]) {// 小于中间值,那么end变成中间往中间往左一位
                    end = mid - 1;
                } else {// 大于则相反
                    start = mid + 1;
                }
            }
            // 交叉了-即找不到情况,说明start在0或者尾部或者在交叉时的前一位,那么得到应该插入位置;
            if (start > end) {
                // 找到了前面一个start,并确定在此即可;
                System.out.println("no find, will insert in :" + start);
                break;
            }
        }
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

输出结果(分别找3,找14,找6)

index = 1
index = 6
no find, will insert in :3

4.总结:

二分法查找,又称折半查找,大家需要记住的重点有

1.已经排序好的数组
2.确定最左边的start,最右边的end
3.无限循环当中找mid角标对应的值,start和end会根据情况改变
4.当发现start和end交叉,那么证明找不到,即如果放入该元素,那么就应该放在此时的start位置.

这就是今天给大家讲的二分(折半)查找算法,希望能帮组大家快速的理解清楚.

版权声明:本文为博主原创文章,未经博主允许不得转载。

北大ACM、NOIP课程二分法

  • 2017年11月27日 15:26
  • 475KB
  • 下载

二分法查找

  • 2013年07月03日 08:34
  • 548B
  • 下载

归并排序、二分法查找的递归实现

一、归并排序 // 归并排序 // 2014-2-22 #include using namespace std; void Merge(int* array, int p, in...

运用二分法对向量进行编码

  • 2012年12月20日 22:17
  • 7KB
  • 下载

二分法模拟圆

  • 2013年07月26日 15:21
  • 511B
  • 下载

二分法查找(数组元素无序)

问题描述: 一数组,含有一堆无序数据,首先将数据按顺序排列,再用二分法实现某个元素的查找,若找到,返回该元素在数组中的下表,否则,返回不存在提示信息。 #include #include int...

二分法排序

  • 2013年11月05日 22:40
  • 24KB
  • 下载

数值分析之二分法上机实验

  • 2014年09月06日 15:34
  • 826B
  • 下载

牛顿迭代法求近似根与二分法求根

牛顿迭代法设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x-x0),求出L与x轴交点的横坐标...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二分法
举报原因:
原因补充:

(最多只允许输入30个字)