欧几里得算法用于求解最大公因数
主要原理:
int gcd(int a,int b){return b?gcd(b,a%b):a;}
扩展欧几里得算法用于求解二元一次方程
首先了解一下裴蜀定理:ax+by=c有解当且仅当gcd(a,b)|c
那么我们就可以求解ax+by=gcd(a,b)
根据这个原理递归求解即可
int exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int GCD=exgcd(b,a%b,x,y);
int temp=x;
x=y;
y=temp-a/b*y;
return GCD;
}
根据这个求得的x,y只是一组可行解
如果gcd(a,b)=1,那么如果得到一组解x0,y0,通解就可以表示为x=x0+b×t,y=y0−a×t
如果需要求最小整数解x,我们可以令t= b (a , b),那么x=(x0%t+t)%t即可