【数论】扩展欧几里得

欧几里得算法用于求解最大公因数
主要原理:
这里写图片描述

int gcd(int a,int b){return b?gcd(b,a%b):a;}

扩展欧几里得算法用于求解二元一次方程

首先了解一下裴蜀定理ax+by=c有解当且仅当gcd(a,b)|c
那么我们就可以求解ax+by=gcd(a,b)
这里写图片描述
根据这个原理递归求解即可

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int GCD=exgcd(b,a%b,x,y);
    int temp=x;
    x=y;
    y=temp-a/b*y;
    return GCD;
}

根据这个求得的xy只是一组可行解

如果gcd(a,b)=1,那么如果得到一组解x0,y0,通解就可以表示为x=x0+b×t,y=y0a×t
如果需要求最小整数解x,我们可以令t= b (a , b),那么x=(x0%t+t)%t即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值