对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。
平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1。
一棵好的平衡二叉树的特征:
(1)保证有n个结点的树的高度为O(logn)
(2)容易维护,也就是说,在做数据项的插入或删除操作时,为平衡树所做的一些辅助操作时间开销为O(1)。
在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
- 调整方法
- 插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点
- 找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。
- 调整方式
- LL型(单右旋):插入位置为左子树的左结点,进行向右旋转。
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。 - RR型(单左旋):插入位置为右子树的右孩子,进行向左旋转。
由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。 - LR型(先左旋后右旋):插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,第二次再调整最小不平衡子树。
由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,如下图:
然后再把该D结点向右上旋转提升到A结点的位置。 - RL型(先右旋后左旋):插入位置为右子树的左孩子,进行两次调整,先右旋转再左旋转;处理情况与LR类似。
- 单右旋操作
- 左平衡旋转处理
对于switch(Lr->bf)的3种情况:LH,EH,RH,下面分情况介绍(这里思考了好久)
- case LH(左子树高)
- case EH(左右等高)
- case RH (右子树高)
- case LH(左子树高)
- LL型(单右旋):插入位置为左子树的左结点,进行向右旋转。