已知一个函数rand7()能够生成1-7的随机数,请给出一个函数rand10(),该函数能够生成1-10的随机数。

给定rand7()生成1-7的随机数,通过拒绝采样法,设计rand10()函数实现1-10的随机数生成。通过多次调用rand7并进行条件判断,优化生成过程,降低平均调用次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

已知一个函数rand7()能够生成1-7的随机数,请给出一个函数,该函数能够生成1-10的随机数。


思路:

假如已知一个函数能够生成1-49的随机数,那么如何以此生成1-10的随机数呢?


解法:

该解法基于一种叫做拒绝采样的方法。主要思想是只要产生一个目标范围内的随机数,则直接返回。如果产生的随机数不在目标范围内,则丢弃该值,重新取样。由于目标范围内的数字被选中的概率相等,这样一个均匀的分布生成了。

显然rand7至少需要执行2次,否则产生不了1-10的数字。通过运行rand7两次,可以生成1-49的整数,

   1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  8  9 10  1  2  3  4
3  
在Python中,已知概率密度函数(PDF)生成随机数通常使用逆变换采样法(Inverse Transform Sampling)。逆变换采样法的基本步骤如下: 1. **定义概率密度函数(PDF)**:首先,需要定义一个已知的概率密度函数。 2. **计算累积分布函数(CDF)**:对PDF进行积分,得到累积分布函数(CDF)。 3. **计算逆累积分布函数(Inverse CDF)**:对CDF进行反函数计算,得到逆累积分布函数。 4. **生成均匀分布随机数**:使用均匀分布生成随机数。 5. **应用逆累积分布函数**:将均匀分布随机数代入逆CDF,得到目标分布的随机数。 下面是一个具体的示例,假设我们要生成一个服从指数分布的随机数: ```python import numpy as np import matplotlib.pyplot as plt # 定义指数分布的概率密度函数 def exponential_pdf(x, lambd): return lambd * np.exp(-lambd * x) # 定义指数分布的累积分布函数 def exponential_cdf(x, lambd): return 1 - np.exp(-lambd * x) # 定义指数分布的逆累积分布函数 def exponential_inverse_cdf(y, lambd): return -np.log(1 - y) / lambd # 生成均匀分布随机数 uniform_random_numbers = np.random.rand(10000) # 生成指数分布随机数 lambd = 1.5 exponential_random_numbers = exponential_inverse_cdf(uniform_random_numbers, lambd) # 绘制结果 plt.hist(exponential_random_numbers, bins=50, density=True, alpha=0.7, color='g', label='Exponential Distribution') plt.plot(np.linspace(0, 5, 1000), exponential_pdf(np.linspace(0, 5, 1000), lambd), 'r', label='PDF') plt.legend() plt.show() ``` 在这个示例中,我们首先定义了指数分布的PDF、CDF和逆CDF。然后,我们生成10000个均匀分布的随机数,并使用逆CDF将其转换为指数分布的随机数。最后,我们使用Matplotlib绘制了生成随机数的直方图和理论PDF曲线。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值