已知一个函数rand7()能够生成1-7的随机数,请给出一个函数rand10(),该函数能够生成1-10的随机数。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ssjhust123/article/details/7753012

题目:

已知一个函数rand7()能够生成1-7的随机数,请给出一个函数,该函数能够生成1-10的随机数。


思路:

假如已知一个函数能够生成1-49的随机数,那么如何以此生成1-10的随机数呢?


解法:

该解法基于一种叫做拒绝采样的方法。主要思想是只要产生一个目标范围内的随机数,则直接返回。如果产生的随机数不在目标范围内,则丢弃该值,重新取样。由于目标范围内的数字被选中的概率相等,这样一个均匀的分布生成了。

显然rand7至少需要执行2次,否则产生不了1-10的数字。通过运行rand7两次,可以生成1-49的整数,

   1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  8  9 10  1  2  3  4
3  5  6  7  8  9 10  1
4  2  3  4  5  6  7  8
5  9 10  1  2  3  4  5
6  6  7  8  9 10  *  *
7  *  *  *  *  *  *  *
由于49不是10的倍数,所以我们需要丢弃一些值,我们想要的数字范围为1-40,不在此范围则丢弃并重新取样。

代码:

int rand10() {
  int row, col, idx;
  do {
    row = rand7();
    col = rand7();
    idx = col + (row-1)*7;
  } while (idx > 40);
  return 1 + (idx-1)%10;
}

由于row范围为1-7,col范围为1-7,这样idx值范围为1-49。大于40的值被丢弃,这样剩下1-40范围内的数字,通过取模返回。下面计算一下得到一个满足1-40范围的数需要进行取样的次数的期望值:

E(# calls to rand7) = 2 * (40/49) +
                      4 * (9/49) * (40/49) +
                      6 * (9/49)2 * (40/49) +
                      ...

                      
                    =  2k * (9/49)k-1 * (40/49)
                      k=1

                    = (80/49) / (1 - 9/49)2
                    = 2.45
优化:

上面的方法大概需要2.45次调用rand7函数才能得到1个1-10范围的数,下面可以进行再度优化。

对于大于40的数,我们不必马上丢弃,可以对41-49的数减去40可得到1-9的随机数,而rand7可生成1-7的随机数,这样可以生成1-63的随机数。对于1-60我们可以直接返回,而61-63则丢弃,这样需要丢弃的数只有3个,相比前面的9个,效率有所提高。而对于61-63的数,减去60后为1-3,rand7产生1-7,这样可以再度利用产生1-21的数,对于1-20我们则直接返回,对于21则丢弃。这时,丢弃的数就只有1个了,优化又进一步。当然这里面对rand7的调用次数也是增加了的。代码如下:

int rand10Imp() {
  int a, b, idx;
  while (true) {
    a = rand7();
    b = rand7();
    idx = b + (a-1)*7;
    if (idx <= 40)
      return 1 + (idx-1)%10;
    a = idx-40;
    b = rand7();
    // get uniform dist from 1 - 63
    idx = b + (a-1)*7;
    if (idx <= 60)
      return 1 + (idx-1)%10;
    a = idx-60;
    b = rand7();
    // get uniform dist from 1-21
    idx = b + (a-1)*7;
    if (idx <= 20)
      return 1 + (idx-1)%10;
  }
}
下面计算下优化后方法的调用rand7函数的期望次数:

E(# calls to rand7) = 2 * (40/49) +
                      3 * (9/49) * (60/63) +
                      4 * (9/49) * (3/63) * (20/21) + 

                      (9/49) * (3/63) * (1/21) *
                      [ 6 * (40/49) +
                        7 * (9/49) * (60/63) +
                        8 * (9/49) * (3/63) * (20/21) ] +

                      ((9/49) * (3/63) * (1/21))2 *
                      [ 10 * (40/49) +
                        11 * (9/49) * (60/63) +
                        12 * (9/49) * (3/63) * (20/21) ] +
                      ...

                    = 2.2123
这里期望次数为2.21,比起未优化的2.45次减少了大概10%。


没有更多推荐了,返回首页