单用Dijstra算法比较难维护。用Dijstra+DFS能简化不少。
看到有小伙伴例7有问题,可以看下是不是Dijstra的算法在计算路径的时候出问题没。我的就是下标u和i弄混了。查了好久。。。。。
#include <iostream>
#include <vector>
#include <string>
#include <climits>
#include <stack>
using namespace std;
struct Node {
int length;
int Num;
};
struct Grap {
int bIkeNum;
vector <Node> link;
};
void Dijkstra(Grap * g, int * dis ,vector<int> * pre ,int N,bool * isvisit ) {
dis[0] = 0;
for (int i = 0; i < N; i++) {
int u = -1, Min = INT_MAX;
for (int j = 0; j < N; j++) { //找Dis最小值
if (!isvisit[j] && dis[j] < Min) {
u = j;
Min = dis[j];
}
}
if (u == -1) return;
isvisit[u] = true;
for (int j = 0; j < g[u].link.size(); j++) {
int v = g[u].link[j].Num;
if (!isvisit[v]) {
if (dis[u] + g[u].link[j].length < dis[v]) {//u是中间结点
pre[v].clear();
pre[v].push_back(u);
dis[v] = dis[u] + g[u].link[j].length;
}
else if (dis[u] + g[i].link[j].length == dis[v]) {
pre[v].push_back(u);
}
}
}
}
}
void DFS(vector <int> * pre, vector <int> & patch, vector <int> & tempatch, Grap * g, int & BikeNeed, int & BikeReturn, int v, int Cmax) {
//cout << " v = " << v << endl;
int perfect = Cmax / 2;
if (v == 0) {
tempatch.push_back(v);
int bn = 0, br = 0;
//计算大小
//cout << "size: " << tempatch.size() << endl;
for (int i = tempatch.size() - 1; i >= 0; i--) {
int b = g[tempatch[i]].bIkeNum;
if (b > perfect) {//大于perfect需要带走
br += b - perfect;
}
else if (b < perfect){ //补齐
br -= (perfect - b);
// cout << "br : " << br << endl;
if (br < 0) {//不够补齐 要从中心调
bn += (-br);
br = 0;
}
}
}
//判断
if (bn < BikeNeed) {
BikeNeed = bn;
BikeReturn = br;
patch = tempatch;
}
else if (bn == BikeNeed && br < BikeReturn) {
BikeNeed = bn;
BikeReturn = br;
patch = tempatch;
}
tempatch.pop_back();
return;
}
tempatch.push_back(v);
for (int i = 0; i < pre[v].size(); i++) {
DFS(pre, patch, tempatch, g, BikeNeed, BikeReturn, pre[v][i], Cmax);
}
tempatch.pop_back();
}
int main() {
int Cmax, N, SP, M;
//Cmax最大容量,N站总数,SP问题站编号,M道路总数
cin >> Cmax >> N >> SP >> M;
Grap * g = new Grap[N + 1];
stack <int> s;
for (int i = 1; i <= N; i++) {
cin >> g[i].bIkeNum;
}
g[0].bIkeNum = Cmax / 2;
Node tempNode;
int tempHead, tempTail;
for (int i = 0; i < M; i++) {
cin >> tempHead >> tempTail >> tempNode.length;
tempNode.Num = tempTail;
g[tempHead].link.push_back(tempNode);
//cout << tempHead << " " << tempNode.Num << " " << tempNode.length << endl;
tempNode.Num = tempHead;
g[tempTail].link.push_back(tempNode);
//cout << tempTail << " " << tempNode.Num << " " << tempNode.length << endl;
}
// int MinLegnth = INT_MAX;
bool * isVisit = new bool[N + 1];
int * dis = new int[N + 1];
vector <int> * pre = new vector<int>[N + 1];
for (int i = 0; i <= N; i++) {
dis[i] = INT_MAX;
isVisit[i] = false;
}
Dijkstra(g, dis, pre, N + 1, isVisit);
int BikeNeed = INT_MAX, BikeReturn = INT_MAX;
vector <int> patch, tempatch;
DFS(pre, patch, tempatch, g, BikeNeed, BikeReturn, SP, Cmax);
cout << BikeNeed << " ";
for (int i = patch.size() - 1; i > 0; i--) {
cout << patch[i] << "->";
}
cout << patch[0] << " ";
cout << BikeReturn << endl;
system("pause");
return 0;
}