现在想将一些物资从S运抵T,必须经过一些中转站。连接中转站的是公路,每条公路都有最大运载量。
每条弧代表一条公路,弧上的数表示该公路的最大运载量。最多能将多少货物从S运抵T?

这是一个典型的网络流模型。为了解答此题,我们先了解网编流的有关定义和概论。
若有向图G=(V,E)满足下列条件:
1. 有且仅有一个顶点S,它的入度为零,即d-(S)=0,这个顶点S便称为源点,或称为发点。
2. 有且仅有一个顶点T,它的出度为零,即d+(T)=0,这个顶点T便称为汇点,或称为收点。
3. 每一条弧都有非负数,叫做这条边的容量。边(vi,vj)的容量用cij表示。
则称之为网络流图,记为G=(V,E,C)。
可行流
对于网络流图G,每一条弧(i,j)都给定一个非负数fij,这一组数满足下列三条件时称为这网络的可行流,用f表示它。
1. 每一条弧(i,j)都有fij<Cij
2. 流量平衡
除了源点S和汇点T之外的所有点vi,恒有:∑j(fij)=∑k(fjk),该等式说明中间点vi的流量守恒,输入与输出量相等。
3. 对于源点S和汇点T有,∑i(fSi)= ∑j(fjT)=V(f)
可增广路
给定一个可行流f={fij}。若fij=Cij,称<vi,vj>为饱和弧;否则
网络流最大流算法SAP详解

本文介绍了网络流模型和最大流问题,探讨了可行流、可增广路、剩余图的概念,并详细阐述了SAP算法,包括最短增广路策略、距离标号维护和优化方法,如邻接表优化、GAP优化、当前弧优化。
最低0.47元/天 解锁文章
6383

被折叠的 条评论
为什么被折叠?



