题意:给你n个数m个查询,问在每一个查询区间[l,r]范围内有多少个值为valu的数出现次数也为valu。
有两种用线段树的方法。两种方法同样都是离线处理查询,保存所有的查询,将查询按照终点从小到大排序。用cnt[valu]记录valu的出现次数,用pos[valu]记录每个valu出现的位置。
1.线段树更新区间,查询点
从小到大遍历这n个数,同时更新cnt[]和pos[]。当valu的出现次数cnt[valu]==valu时,说明,当查询的起点点在1到pos[valu][0]之间的位置时,这个数valu是满足条件的,所以必须往答案里加一,即将区间[1,pos[valu][0]]之间的所有位置都加上一,同时记录这个区间即二元组,设为pre[valu]。当cnt[valu]>valu时,如果查询的起点是在上一个区间内时,这个数valu是不满足条件的,所以要把上一个区间之间的所有位置即[pre[valu].l,pre[valu].r]都减一。同时,新的满足查询条件的区间是[pre[valu].r+1,pos[valu][cnt[valu]-valu]]],往这个区间之间所有位置都加一,并且更新pre[valu]。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
const int N=1e5+5;
struct Query
{
int st,ed,id;
Query(){}
Query(int a,int b,int c){st=a;ed=b;id=c;}
bool operator<(const Query &b)const
{
return ed<b.ed;
}
};
struct node
{
int lft,rht,sum;
int mid(){return lft+(rht-lft)/2;}
};
struct Segtree
{
node tree[N*4];
void relax(int ind)
{
int &sum=tree[ind].sum;
if(sum!=0)
{
tree[LL(ind)].sum+=sum;
tree[RR(ind)].sum+=sum;
sum=0;
}
}
void build(int lft,int rht,int ind)
{
tree[ind].lft=lft; tree[ind].rht=rht;
tree[ind].sum=0;
if(lft!=rht)
{
int mid=tree[ind].mid();
build(lft,mid,LL(ind));
build(mid+1,rht,RR(ind));
}
}
void updata(int be,int end,int ind,int valu)
{
int lft=tree[ind].lft,rht=tree[ind].rht;
if(be<=lft&&rht<=end) tree[ind].sum+=valu;
else
{
relax(ind);
int mid=tree[ind].mid();
if(be<=mid) updata(be,end,LL(ind),valu);
if(end>mid) updata(be,end,RR(ind),valu);
}
}
int query(int pos,int ind)
{
if(tree[ind].lft==tree[ind].rht) return tree[ind].sum;
else
{
relax(ind);
int mid=tree[ind].mid();
if(pos<=mid) return query(pos,LL(ind));
else return query(pos,RR(ind));
}
}
}seg;
vector<Query> query;
vector<int>pos[N];
int data[N],cnt[N],res[N];
pair<int,int> pre[N];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&data[i]);
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
query.push_back(Query(a,b,i));
}
sort(query.begin(),query.end());
int ind=0;
seg.build(1,n,1);
for(int i=1;i<=n;i++)
{
int valu=data[i];
if(valu<=n)
{
cnt[valu]++;
pos[valu].push_back(i);
if(cnt[valu]==valu)
{
pre[valu]=make_pair(1,pos[valu][0]);
seg.updata(pre[valu].first,pre[valu].second,1,1);
}
else if(cnt[valu]>valu)
{
seg.updata(pre[valu].first,pre[valu].second,1,-1);
pre[valu]=make_pair(pre[valu].second+1,pos[valu][cnt[valu]-valu]);
seg.updata(pre[valu].first,pre[valu].second,1,1);
}
}
while(query[ind].ed==i&&ind<m)
{
res[query[ind].id]=seg.query(query[ind].st,1);
ind++;
}
}
for(int i=0;i<m;i++) printf("%d\n",res[i]);
return 0;
}
2.更新点,查询区间
当cnt[valu]==valu时,线段树里将pos[valu][0]这个位置加一。
当cnt[valu]>valu时,线段树里将pos[valu][cnt[valu]-valu-1]这个位置的数减二。
当cnt[valu]>valu+1时,线段树里将pos[valu][cnt[valu]-valu-2]这个位置的数加一。
直接查询就可以了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
const int N=1e5+5;
struct Query
{
int st,ed,id;
Query(){}
Query(int a,int b,int c){st=a;ed=b;id=c;}
bool operator < (const Query &b)const
{
return ed<b.ed;
}
};
struct node
{
int lft,rht,sum;
int mid(){return lft+(rht-lft)/2;}
};
struct Segtree
{
node tree[N*4];
void build(int lft,int rht,int ind)
{
tree[ind].lft=lft; tree[ind].rht=rht;
tree[ind].sum=0;
if(lft!=rht)
{
int mid=tree[ind].mid();
build(lft,mid,LL(ind));
build(mid+1,rht,RR(ind));
}
}
void updata(int pos,int ind,int valu)
{
tree[ind].sum+=valu;
if(tree[ind].lft==tree[ind].rht) return;
else
{
int mid=tree[ind].mid();
if(pos<=mid) updata(pos,LL(ind),valu);
else updata(pos,RR(ind),valu);
}
}
int query(int be,int end,int ind)
{
int lft=tree[ind].lft,rht=tree[ind].rht;
if(be<=lft&&rht<=end) return tree[ind].sum;
else
{
int mid=tree[ind].mid();
int sum1=0,sum2=0;
if(be<=mid) sum1=query(be,end,LL(ind));
if(end>mid) sum2=query(be,end,RR(ind));
return sum1+sum2;
}
}
}seg;
vector<int> pos[N];
vector<Query> query;
int data[N],cnt[N],res[N];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&data[i]);
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
query.push_back(Query(a,b,i));
}
sort(query.begin(),query.end());
int ind=0;
seg.build(1,n,1);
for(int i=1;i<=n;i++)
{
int valu=data[i];
if(valu<=n)
{
cnt[valu]++;
pos[valu].push_back(i);
if(cnt[valu]>=valu)
{
if(cnt[valu]>valu)
seg.updata(pos[valu][cnt[valu]-valu-1],1,-2);
if(cnt[valu]>valu+1)
seg.updata(pos[valu][cnt[valu]-valu-2],1,1);
seg.updata(pos[valu][cnt[valu]-valu],1,1);
}
}
while(query[ind].ed==i&&ind<m)
{
res[query[ind].id]=seg.query(query[ind].st,query[ind].ed,1);
ind++;
}
}
for(int i=0;i<m;i++) printf("%d\n",res[i]);
return 0;
}