NYOJ 116 士兵杀敌(二) 树状数组 & 线段树

士兵杀敌(二)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 5
描述

南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的。

小工是南将军手下的军师,南将军经常想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧。

南将军的某次询问之后士兵i可能又杀敌q人,之后南将军再询问的时候,需要考虑到新增的杀敌数。

输入
只有一组测试数据
第一行是两个整数N,M,其中N表示士兵的个数(1<N<1000000),M表示指令的条数。(1<M<100000)
随后的一行是N个整数,ai表示第i号士兵杀敌数目。(0<=ai<=100)
随后的M行每行是一条指令,这条指令包含了一个字符串和两个整数,首先是一个字符串,如果是字符串QUERY则表示南将军进行了查询操作,后面的两个整数m,n,表示查询的起始与终止士兵编号;如果是字符串ADD则后面跟的两个整数I,A(1<=I<=N,1<=A<=100),表示第I个士兵新增杀敌数为A.
输出
对于每次查询,输出一个整数R表示第m号士兵到第n号士兵的总杀敌数,每组输出占一行
样例输入
5 6
1 2 3 4 5
QUERY 1 3
ADD 1 2
QUERY 1 3
ADD 2 3
QUERY 1 2
QUERY 1 5
样例输出
6
8
8
20
题目链接: NYOJ 116 士兵杀敌(二) 树状数组 & 线段树

     树状数组    线段树     模板

已AC代码:(树状数组)

#include<cstdio>
#include<cstring>
#define M 1000010
int n,m,tree[M];
char str[50];
int lowbit(int i)//下标 
{
	return i & (-i);
}
void updata(int pos,int val) //更新 
{
	while(pos<=n)//从pos点向后都要加 val 
	{
		tree[pos]+=val;
		pos+=lowbit(pos);
	}
}
int query(int pos)//查询前 pos 项的和 
{
	int sum=0;
	while(pos>0)//从pos点向前求和 
	{
		sum+=tree[pos];
		pos-=lowbit(pos);
	}
	return sum;
}
int main()
{
	int a,b,i,j;
	scanf("%d%d",&n,&m);
	memset(tree,0,sizeof(tree));
	for(i=1;i<=n;++i)
	{
		scanf("%d",&a);
		updata(i,a);
	}
	while(m--)
	{
		scanf("%s%d%d",str,&a,&b);
		if(strcmp(str,"QUERY")==0)
			printf("%d\n",query(b)-query(a-1));//query()返回前 n 项和 
		else if(strcmp(str,"ADD")==0)
			updata(a,b);//更新 
	}
	return 0;
}


已AC代码:(线段树)

#include<cstdio>
#include<cstring>
#define M 1000010
struct TREE{
	int left,right,sum;
}tree[M*4];//建树区间是要处理的最长线段的两倍多, 
int num[M],n,m;
char str[50];
void build(int l,int r,int root)//建树 
{
	tree[root].left=l;
	tree[root].right=r;
	if(l==r)
	{
		tree[root].sum=num[l];
		return ;
	}
	int mid=(l+r)/2;
	build(l,mid,root<<1);
	build(mid+1,r,root<<1|1);
	tree[root].sum=tree[root<<1].sum+tree[root<<1|1].sum;
}
void updata(int pos,int val,int root)//更新 
{
	if(tree[root].left==tree[root].right)
	{
		tree[root].sum=val;
		return ;
	}
	int mid=(tree[root].left+tree[root].right)/2;
	if(pos<=mid)
		updata(pos,val,root<<1);
	else
		updata(pos,val,root<<1|1);
	tree[root].sum=tree[root<<1].sum+tree[root<<1|1].sum;
}
int query(int l,int r,int root)//查询 
{
	if(l<=tree[root].left && r>=tree[root].right)
		return tree[root].sum;
	int mid=(tree[root].left+tree[root].right)/2;
	int s=0;
	if(l<=mid)
		s+=query(l,r,root<<1);
	if(r>mid)
		s+=query(l,r,root<<1|1);
	return s;
}
int main()
{
	int i,a,b;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;++i)
		scanf("%d",&num[i]);
	build(1,n,1);
	while(m--)
	{
		scanf("%s%d%d",str,&a,&b);
		if(strcmp(str,"QUERY")==0)
			printf("%d\n",query(a,b,1));
		else if(strcmp(str,"ADD")==0)
		{
			num[a]+=b;
			updata(a,num[a],1);
		}
	}
	return 0;
}


孪生素数是指两个素数之间的差值为2的素数对。通过筛选法可以找出给定素数范围内的所有孪生素数的组数。 在引用的代码中,使用了递归筛选法来解决孪生素数问题。该程序首先使用循环将素数的倍数标记为非素数,然后再遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 具体实现过程如下: 1. 定义一个数组a[N,用来标记数字是否为素数,其中N为素数范围的上限。 2. 初始化数组a,将0和1标记为非素数。 3. 输入要查询的孪生素数的个数n。 4. 循环n次,每次读入一个要查询的素数范围num。 5. 使用两层循环,外层循环从2遍历到num/2,内层循环从i的平方开始,将素数的倍数标记为非素数。 6. 再次循环遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 7. 输出总数。 至此,我们可以使用这个筛选法的程序来解决孪生素数问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python用递归筛选法求N以内的孪生质数(孪生素数)](https://blog.csdn.net/weixin_39734646/article/details/110990629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [NYOJ-26 孪生素数问题](https://blog.csdn.net/memoryofyck/article/details/52059096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值