动态规划求解最大子段和

原创 2013年12月04日 11:00:36

子段:连续

如果定义中间变量b[j]=max<1...j>{  sum<k=i...j>a[k]  }即固定末尾位置j,往前数i个最大的子段和

则全序列最大子段和即遍历所有的b[j],即max<j>{ b[j] }=max<j>{  max<1...j>{  sum<k=i...j>a[k]  }  }

如果b[j-1]>0,则b[j]=b[j-1]+a[j];这是因为b[j]是从最后一个元素a[j]往前数,即必然包含a[j],而a[j]前面的元素又>0,那肯定要把前面的那段加进来才会变大。

如果b[j-1]<0, 则b【j】若把前面的加进来岂不是更小了,因此肯定不能加,这种情况下b[j]=a[j];

动态规划:  问题规模定义为opm_fromj,即 b[j]依赖于更小的问题规模b[j-1];

注意opm_fromj可以小于opm_fromj-1,这是因为opm_fromj固定的是j,从j往前数若干个元素的最大值,因此opm_fromj必然要包含数组的第j个元素。

每次迭代opm_fromj={opm_from(j-1)+pIntArray[j]当opm_fromj>0即从第j-1个元素往前数的最优子段和大于0的情况,  pIntArray[j]当opm_from[j-1]<0的情况,这时自然应该摒弃前面的内容}

从各个best_j中找出最优的那个j,存在best_j
int GetSubArraySum(int* pIntArray, int nCount)
{
    /*在这里实现功能*/
 if(pIntArray==NULL||nCount<1) return 0;
 int opm_fromj=0;//opm_fromj存储从1到j的最优值,固定j,问题规模是j
 int best_j=0;//这个是关键,存储的是最优的那个j

 for(int j=0;j<nCount;j++)//动态规划,问题规模的增加
 {
  if(opm_fromj>0) opm_fromj+= pIntArray[j];//注意是最优值大于0
        else opm_fromj=pIntArray[j];
  if(best_j<opm_fromj) best_j=opm_fromj;  // 筛选最优的b【j】

 }
    return best_j;
}

最大子段和问题的动态规划求解

  • 2011年05月16日 14:37
  • 69KB
  • 下载

最大子段和的简单、分治与动态规划解法

//最大子段和_简单解法 package wkx; import java.io.IOException; public class Test { private static int M...

text(动态规划之最大子段和)

  • 2010年05月12日 13:41
  • 18KB
  • 下载

最大子段和-动态规划法

  • 2012年12月10日 15:16
  • 1KB
  • 下载

动态规划-最大子段和

一、最大子段和     问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义...

动态规划——最大子段和

#include int MaxSum(int n, int *a, int *besti, int *bestj) { int sum = 0, i,j,k, thissum; for(i ...

动态规划:求最大子段和

动态规划:求最大子段和 1、题目 2、方法 3、实现代码 //动态规划法求最大子段和 // by 孙琨SealSun at UCAS // 2015.11.20 #include using n...

动态规划之最大子段和

去年有想过

动态规划之最大子段和问题总结

动态规划之最大子段和问题总结      这几天看了最大子段和的问题,最大子段和的问题用动态规划处理很方便,总的来说最大子段和可以分为四类:1、一维数组求最大子段和;2、二维数组求最大子矩阵;3、三维...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划求解最大子段和
举报原因:
原因补充:

(最多只允许输入30个字)