动态规划求解最大子段和

原创 2013年12月04日 11:00:36

子段:连续

如果定义中间变量b[j]=max<1...j>{  sum<k=i...j>a[k]  }即固定末尾位置j,往前数i个最大的子段和

则全序列最大子段和即遍历所有的b[j],即max<j>{ b[j] }=max<j>{  max<1...j>{  sum<k=i...j>a[k]  }  }

如果b[j-1]>0,则b[j]=b[j-1]+a[j];这是因为b[j]是从最后一个元素a[j]往前数,即必然包含a[j],而a[j]前面的元素又>0,那肯定要把前面的那段加进来才会变大。

如果b[j-1]<0, 则b【j】若把前面的加进来岂不是更小了,因此肯定不能加,这种情况下b[j]=a[j];

动态规划:  问题规模定义为opm_fromj,即 b[j]依赖于更小的问题规模b[j-1];

注意opm_fromj可以小于opm_fromj-1,这是因为opm_fromj固定的是j,从j往前数若干个元素的最大值,因此opm_fromj必然要包含数组的第j个元素。

每次迭代opm_fromj={opm_from(j-1)+pIntArray[j]当opm_fromj>0即从第j-1个元素往前数的最优子段和大于0的情况,  pIntArray[j]当opm_from[j-1]<0的情况,这时自然应该摒弃前面的内容}

从各个best_j中找出最优的那个j,存在best_j
int GetSubArraySum(int* pIntArray, int nCount)
{
    /*在这里实现功能*/
 if(pIntArray==NULL||nCount<1) return 0;
 int opm_fromj=0;//opm_fromj存储从1到j的最优值,固定j,问题规模是j
 int best_j=0;//这个是关键,存储的是最优的那个j

 for(int j=0;j<nCount;j++)//动态规划,问题规模的增加
 {
  if(opm_fromj>0) opm_fromj+= pIntArray[j];//注意是最优值大于0
        else opm_fromj=pIntArray[j];
  if(best_j<opm_fromj) best_j=opm_fromj;  // 筛选最优的b【j】

 }
    return best_j;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【最大子段和】SDUT 3100 动态规划?

动态规划? Time Limit: 1000MS Memory Limit: 65536KB Problem Description 动态规划作为《运筹学》的一个分支,被广泛的用于解决较为复杂...

动态规划入门-最大子段

题目and教程来源 http://www.51nod.com/tutorial/course.html#!courseId=2 输入 第1行:整数序列的长度N(2 <= N <=...

DP动态规划--最大子段和--Max Sum

Description Given a sequencea[1],a[2],a[3]......a[n], your job is to calculate the max sum of asub-...

最大子段和——分治与动态规划

来自:http://www.cnblogs.com/hustcat/archive/2009/06/01/1493949.html 问题:  给定n个整数(可能为负数)组成的序列a[1],a[2],a...

HDU 1003 求最大子段和的动态规划

http://acm.hdu.edu.cn/showproblem.php?pid=1003 算法基本思路: /*  * 此题是动态规划找到 a[1……n] 中 最大的字段和  * 令  ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)