【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

UVA11248【最大流最小割入门】

原创 2016年06月01日 11:26:27

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2205


给定一个有向网络,每条边均有一个容量。问是否存在一个从点1->n,流量为C的流。如果不存在,是否可以恰好修改一条弧的容量,使得这样的流存在?

 第一行输入 N ,E, C (n个点, e条边)

下面e行u v cap 表示边



求最大流,如果流量>=c,则输出possible

否则修改边,边一定是最小割中的边。

依次把边增加到C中,然后求最大流,看最大流是否达到C


优化:求完最大流之后保存,每次在此基础上增广 



ISAP

#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;

const int maxn=100+10;
const int INF = 1000000000;

struct Edge{
	int from, to, cap, flow; 
};

bool operator < (const Edge& a, const Edge& b) {
  return a.from < b.from || (a.from == b.from && a.to < b.to);
}

struct ISAP{
  int n, m, s, t;
  vector<Edge> edges;
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];        // 当前弧指针
  int p[maxn];          // 可增广路上的上一条弧
  int num[maxn];        // 距离标号计数
  
  void AddEdge(int from, int to, int cap) {
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }
  
  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(t);
    vis[t] = 1;
    d[t] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]^1];
        if(!vis[e.from] && e.cap > e.flow) {
          vis[e.from] = 1;
          d[e.from] = d[x] + 1;
          Q.push(e.from);
        }
      }
    }
    return vis[s];
  }
  
  void ClearAll(int n) {
    this->n = n;
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }
  
  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;    
  }
  
  int  Augment(){
  	int x=t,a=INF;
  	while(x!=s){
  		Edge &e=edges[p[x]];
  		a=min(a,e.cap-e.flow);
  		x=edges[p[x]].from;
  	}
  	x=t;
  	while(x != s) {
      edges[p[x]].flow += a;
      edges[p[x]^1].flow -= a;
      x = edges[p[x]].from;
    }
    return a;
  }
  
  int Maxflow(int s, int t, int need) {
    this->s = s; this->t = t;
    int flow = 0;
    BFS();
    memset(num, 0, sizeof(num));
    for(int i = 0; i < n; i++) num[d[i]]++;
    int x = s;
    memset(cur, 0, sizeof(cur));
    while(d[s] < n) {
      if(x == t) {
        flow += Augment();
        if(flow >= need) return flow;
        x = s;
      }
      int ok = 0;
      for(int i = cur[x]; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(e.cap > e.flow && d[x] == d[e.to] + 1) { // Advance
          ok = 1;
          p[e.to] = G[x][i];
          cur[x] = i; // 注意
          x = e.to;
          break;
        }
      }
      if(!ok) { // Retreat
        int m = n-1; // 初值注意
        for(int i = 0; i < G[x].size(); i++) {
          Edge& e = edges[G[x][i]];
          if(e.cap > e.flow) m = min(m, d[e.to]);
        }
        if(--num[d[x]] == 0) break;
        num[d[x] = m+1]++;
        cur[x] = 0; // 注意
        if(x != s) x = edges[p[x]].from;
      }
    }
    return flow;
  }
  
  vector<int> Mincut() { // call this after maxflow
    BFS();
    vector<int> ans;
    for(int i = 0; i < edges.size(); i++) {
      Edge& e = edges[i];
      if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.push_back(i);
    }
    return ans;
  }

  void Reduce() {
    for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
  }

  void print() {
    printf("Graph:\n");
    for(int i = 0; i < edges.size(); i++)
      printf("%d->%d, %d, %d\n", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
  }
};

ISAP g;

int main(){
	int n,e,c,kase=0;
	while(scanf("%d%d%d",&n,&e,&c)==3&&n){
		g.ClearAll(n);
		while(e--) {				//读入边 
     		int b1, b2, fp;
      		scanf("%d%d%d", &b1, &b2, &fp);
      		g.AddEdge(b1-1, b2-1, fp);
    	}
		int flow = g.Maxflow(0, n-1, INF);
    printf("Case %d: ", ++kase);
    if(flow >= c) printf("possible\n");
    else {
      vector<int> cut = g.Mincut();
      g.Reduce();
      vector<Edge> ans;
      for(int i = 0; i < cut.size(); i++) {
        Edge& e = g.edges[cut[i]];
        e.cap = c;
        g.ClearFlow();
        if(flow + g.Maxflow(0, n-1, c-flow) >= c) ans.push_back(e);
        e.cap = 0;
      }
      if(ans.empty()) printf("not possible\n");
      else {
        sort(ans.begin(), ans.end());
        printf("possible option:(%d,%d)", ans[0].from+1, ans[0].to+1);
        for(int i = 1; i < ans.size(); i++)
          printf(",(%d,%d)", ans[i].from+1, ans[i].to+1);
        printf("\n");
      }
    }
  }
  return 0;		
}

  
  
  



Dinic 

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn = 100 + 10;
const int INF = 1000000000;

struct Edge {
  int from, to, cap, flow;
};

bool operator < (const Edge& a, const Edge& b) {
  return a.from < b.from || (a.from == b.from && a.to < b.to);
}

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];         // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];        // 当前弧指针

  void ClearAll(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;    
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }

  vector<int> Mincut() { // call this after maxflow
    vector<int> ans;
    for(int i = 0; i < edges.size(); i++) {
      Edge& e = edges[i];
      if(vis[e.from] && !vis[e.to] && e.cap > 0) ans.push_back(i);
    }
    return ans;
  }

  void Reduce() {
    for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
  }
};

Dinic g;

int main() {
  int n, e, c, kase = 0;
  while(scanf("%d%d%d", &n, &e, &c) == 3 && n) {
    g.ClearAll(n);
    while(e--) {
      int b1, b2, fp;
      scanf("%d%d%d", &b1, &b2, &fp);
      g.AddEdge(b1-1, b2-1, fp);
    }
    int flow = g.Maxflow(0, n-1);
    printf("Case %d: ", ++kase);
    if(flow >= c) printf("possible\n");
    else {
      vector<int> cut = g.Mincut();
      g.Reduce();
      vector<Edge> ans;
      for(int i = 0; i < cut.size(); i++) {
        Edge& e = g.edges[cut[i]];
        e.cap = c;
        g.ClearFlow();
        if(flow + g.Maxflow(0, n-1) >= c) ans.push_back(e);
        e.cap = 0;
      }
      if(ans.empty()) printf("not possible\n");
      else {
        sort(ans.begin(), ans.end());
        printf("possible option:(%d,%d)", ans[0].from+1, ans[0].to+1);
        for(int i = 1; i < ans.size(); i++)
          printf(",(%d,%d)", ans[i].from+1, ans[i].to+1);
        printf("\n");
      }
    }
  }
  return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

SPOJ 839 Optimal Marks 最小割模型的转化(按位求最大流)

此题Amber的论文上还是有讲,建图的方法就不再赘述 题意描述:一个无向图,一些顶点权值已知而一些顶点权值未知,其中图中边的权值为其关联的两个顶点的异或值,现在让你在未知权值的顶点上填上权值后使得要求所有的边权之和最小,输出每个顶点的权值 关键是怎样输出方案。 我们按位进行网络流时,只需要到已知的最大标号的最大的一位即可。 然后对每一位做完最大流后,还是dfs残留网络,找不满流的边能到达的所有点即可。这能保证S集合中的个数最少。即保证了有多个方案下标号和最小的方案

Uva 11248Frequency Hopping 网络流 最大流最小割

思路:白书说得很清楚,说下有几个注意的地方。 (1)当跑完最大流时候,最小割必定满流,即最小割每条边流量都等于容量 (2) 跑完最大流的时候,用每条边的容量减去流量便是此时的残量网络 (3)个人感觉白...

UVa10779 Collector's Problem 最大流(求种类最多)

  //题目给出T,表示测试组数,n和m表示一共n和人,和m中贴纸。 //接下来n行,第一个是k,表示这个人的贴画种数,接下来有k //个数,表示不同种贴画的个数,求第一个人经过交换贴画,最多 //可以有多少种贴画,交换规则,一对一,对方没有这张才可以交换。 //分析: //第一个人当源点,得到的当汇点,每种贴画看做一个点,源点到这些点 //的容量为对应贴画的数量,每个人也看做

uva 11248 - Frequency Hopping 最大流最小割入门题 求割集模板

232/UK44i/334sda#nh$X3y/Appx-301a At this moment, through out Europe, our base station numbers 1 to ...

UVA11248 最大流ISAP模板

  //题意:给定一个有向网络,每条边均有一个容量。问是否存在一个从点1到点N,流量为C的流。 //如果不存在,是否可以恰好修改一条弧的容量,使得存在这样的流? // //分析:先求一次最大流,如果流量至少为C,则直接输出possible,否则需要修改的弧一定是最小割里的弧。 //依次把这些弧的容量增加到C,然后再求最大流,看最大流量是否至少为C即可。 //很可惜,这样写出来的程

UVA 10480 Sabotage (最大流最小割输出路劲)

题目链接 题目大意:有n个城市m条路,没条路隔断都要花费钱,现在要隔断1和2之间的联系,问要使得花费最小要怎么割。 分析:可以先跑一遍最大流,然后用最小割定理,从源点bfs搜索不满流的边,组成集合...

什么是网络流的割?什么是网络流的最小割?

前一向学会最大流的几个写法~~FF..EK...Dinic...就以为自己会网络流了...今天去做hh大牛的网络流习题...发现自己除了最大流....建图以及其他性质神马的都一片空白....拿到一个题..无从下手来建图....网上搜了一下网络流的建图策略与方法...很多大牛提到最小割...我知道求最小割求出最大流就行了...最大流和最小割的值是相等的...但我一直没搞懂最小割是什么...网上搜了一些最小割的资料....都比较含糊....后来去Google了一个英文资料....几张图让我一下明白网络流的割是个什么东西...: a <img src="htt

UVa 11248 - Frequency Hopping - 最大流 - 最小割

题目描述:lrj厚白书第5章第6节第一道例题 题目分析:建图求最大流,如果最大流大于c,那么直接输出possible;如果最大流小于c,那么就要改变属于最小割边的值。 下面是代码:(水过,有时间在...

SPOJ 839 Optimal Marks 最小割模型的转化(按位求最大流)

此题Amber的论文上还是有讲,建图的方法就不再赘述 题意描述:一个无向图,一些顶点权值已知而一些顶点权值未知,其中图中边的权值为其关联的两个顶点的异或值,现在让你在未知权值的顶点上填上权值后使得要求所有的边权之和最小,输出每个顶点的权值 关键是怎样输出方案。 我们按位进行网络流时,只需要到已知的最大标号的最大的一位即可。 然后对每一位做完最大流后,还是dfs残留网络,找不满流的边能到达的所有点即可。这能保证S集合中的个数最少。即保证了有多个方案下标号和最小的方案

最大流,最小割(水塘,uva 1515)

最大流是由最小割决定的,一个木桶能装多少水是由最短的那块木板决定的,一条路单位时间最多能通过多少辆车是由最窄的那个路口决定的。 http://blog.csdn.net/jijijix/articl...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)