Matlab 图像处理 形态学 腐蚀 膨胀 开闭运算 连通分量

转载 2016年06月01日 15:39:41

【转载】:Matlab 图像处理 形态学 腐蚀 膨胀 开闭运算 连通分量 - yangyangyang20092010的专栏 - 博客频道 - CSDN.NET  http://blog.csdn.net/yangyangyang20092010/article/details/8289572

      形态学是提取图像特征的有力工具,针对二值图像和灰度图像的腐蚀、膨胀和重构的基本操作可以组合使用,以执行非常宽泛的任务。其练习代码和结果如下:

 

  1 %% 第9章 形态学处理
  2 
  3 %% imdilate膨胀
  4 clc
  5 clear
  6 
  7 A1=imread('.\images\dipum_images_ch09\Fig0906(a)(broken-text).tif');
  8 info=imfinfo('.\images\dipum_images_ch09\Fig0906(a)(broken-text).tif')
  9 B=[0 1 0
 10    1 1 1
 11    0 1 0];
 12 A2=imdilate(A1,B);%图像A1被结构元素B膨胀
 13 A3=imdilate(A2,B);
 14 A4=imdilate(A3,B);
 15 
 16 subplot(221),imshow(A1);
 17 title('imdilate膨胀原始图像');
 18 
 19 subplot(222),imshow(A2);
 20 title('使用B后1次膨胀后的图像');
 21 
 22 subplot(223),imshow(A3);
 23 title('使用B后2次膨胀后的图像');
 24 
 25 subplot(224),imshow(A4);
 26 title('使用B后3次膨胀后的图像');
 27%imdilate图像膨胀处理过程运行结果如下:

 28 
 29 %% imerode腐蚀
 30 clc
 31 clear
 32 A1=imread('.\images\dipum_images_ch09\Fig0908(a)(wirebond-mask).tif');
 33 subplot(221),imshow(A1);
 34 title('腐蚀原始图像');
 35 
 36 %strel函数的功能是运用各种形状和大小构造结构元素
 37 se1=strel('disk',5);%这里是创建一个半径为5的平坦型圆盘结构元素
 38 A2=imerode(A1,se1);
 39 subplot(222),imshow(A2);
 40 title('使用结构原始disk(5)腐蚀后的图像');
 41 
 42 se2=strel('disk',10);
 43 A3=imerode(A1,se2);
 44 subplot(223),imshow(A3);
 45 title('使用结构原始disk(10)腐蚀后的图像');
 46 
 47 se3=strel('disk',20);
 48 A4=imerode(A1,se3);
 49 subplot(224),imshow(A4);
 50 title('使用结构原始disk(20)腐蚀后的图像');
 51 %图像腐蚀处理过程运行结果如下:
 52 
 53 %% 开运算和闭运算
 54 clc
 55 clear
 56 f=imread('.\images\dipum_images_ch09\Fig0910(a)(shapes).tif');
 57 %se=strel('square',5');%方型结构元素
 58 se=strel('disk',5');%圆盘型结构元素
 59 imshow(f);%原图像
 60 title('开闭运算原始图像')
 61%运行结果如下:

 62 
 63 %开运算数学上是先腐蚀后膨胀的结果
 64 %开运算的物理结果为完全删除了不能包含结构元素的对象区域,平滑
 65 %了对象的轮廓,断开了狭窄的连接,去掉了细小的突出部分
 66 fo=imopen(f,se);%直接开运算
 67 figure,subplot(221),imshow(fo);
 68 title('直接开运算');
 69 
 70 %闭运算在数学上是先膨胀再腐蚀的结果
 71 %闭运算的物理结果也是会平滑对象的轮廓,但是与开运算不同的是,闭运算
 72 %一般会将狭窄的缺口连接起来形成细长的弯口,并填充比结构元素小的洞
 73 fc=imclose(f,se);%直接闭运算
 74 subplot(222),imshow(fc);
 75 title('直接闭运算');
 76 
 77 foc=imclose(fo,se);%先开后闭运算
 78 subplot(223),imshow(foc);
 79 title('先开后闭运算');
 80 
 81 fco=imopen(fc,se);%先闭后开运算
 82 subplot(224),imshow(fco);
 83 title('先闭后开运算');
 84%开闭运算结果如下:

 85 
 86 %先膨胀再腐蚀
 87 fse=imdilate(f,se);%膨胀
 88 
 89 %gcf为得到当前图像的句柄,当前图像是指例如PLOT,TITLE,SURF等
 90 %get函数为得到物体的属性,get(0,'screensize')为返回所有物体screensize属性值
 91 %set函数为设置物体的属性
 92 figure,set(gcf,'outerposition',get(0,'screensize'));%具体目的是设置当前窗口的大小
 93 subplot(211),imshow(fse);
 94 title('使用disk(5)先膨胀后的图像');
 95 
 96 fes=imerode(fse,se);
 97 subplot(212),imshow(fes);
 98 title('使用disk(5)先膨胀再腐蚀后的图像');
 99%先膨胀后腐蚀图像如下:

100 
101 %先腐蚀再膨胀
102 fse=imerode(f,se);
103 figure,set(gcf,'outerposition',get(0,'screensize'))
104 subplot(211),imshow(fse);
105 title('使用disk(5)先腐蚀后的图像');
106 
107 fes=imdilate(fse,se);
108 subplot(212),imshow(fes);
109 title('使用disk(5)先腐蚀再膨胀后的图像');
110%先腐蚀后膨胀的图像如下:

111 
112 %% imopen imclose在指纹上的应用
113 clc
114 clear
115 f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
116 se=strel('square',3);%边长为3的方形结构元素
117 subplot(121),imshow(f);
118 title('指纹原始图像');
119 
120 A=imerode(f,se);%腐蚀
121 subplot(122),imshow(A);
122 title('腐蚀后的指纹原始图像');
123%指纹原始图像和腐蚀后的图像结果如下:

124 
125 fo=imopen(f,se);
126 figure,subplot(221),imshow(fo);
127 title('使用square(3)开操作后的图像');
128 
129 fc=imclose(f,se);
130 subplot(222),imshow(fc);
131 title('使用square闭操作后的图像');
132 
133 foc=imclose(fo,se);
134 subplot(223),imshow(foc);
135 title('使用square(3)先开后闭操作后的图像')
136 
137 fco=imopen(fc,se);
138 subplot(224),imshow(fco);
139 title('使用square(3)先闭后开操作后的图像');
140%指纹图像开闭操作过程结果如下:

141 
142 %% bwhitmiss击中或击不中变换
143 clc
144 clear
145 f=imread('.\images\dipum_images_ch09\Fig0913(a)(small-squares).tif');
146 imshow(f);
147 title('击中或不击中原始图像');
148%击中或不击中原始图像显示结果如下:

149 
150 B1=strel([0 0 0;0 1 1;0 1 0]);%击中:要求击中所有1的位置
151 B2=strel([1 1 1;1 0 0;1 0 0]);%击不中,要求击不中所有1的位置
152 B3=strel([0 1 0;1 1 1;0 1 0]);%击中
153 B4=strel([1 0 1;0 0 0;0 0 0]);%击不中
154 B5=strel([0 0 0;0 1 0;0 0 0]);%击中
155 B6=strel([1 1 1;1 0 0;1 0 0]);%击不中
156 
157 g=imerode(f,B1)&imerode(~f,B2)%利用定义来实现击中或击不中
158 figure,subplot(221),imshow(g);
159 title('定义实现组1击中击不中图像');
160 
161 g1=bwhitmiss(f,B1,B2);
162 subplot(222),imshow(g1);
163 title('结构数组1击中击不中后的图像');
164 
165 g2=bwhitmiss(f,B3,B4);
166 subplot(223),imshow(g2);
167 title('结构数组2击中击不中的图像');
168 
169 g3=bwhitmiss(f,B5,B6);
170 subplot(224),imshow(g3);
171 title('结构数组3击中击不中的图像');
172%击中击不中变换后图像如下:

173 
174 %%makelut
175 clc
176 clear
177 
178 f=inline('sum(x(:))>=3');%inline是用来定义局部函数的
179 lut2=makelut(f,2)%为函数f构造一个接收2*2矩阵的查找表
180 lut3=makelut(f,3)
181 
182 %% Conway生命游戏
183 clc
184 clear
185 lut=makelut(@conwaylaws,3);
186 bw1=  [0     0     0     0     0     0     0     0     0     0
187        0     0     0     0     0     0     0     0     0     0
188        0     0     0     1     0     0     1     0     0     0
189        0     0     0     1     1     1     1     0     0     0
190        0     0     1     0     0     0     0     1     0     0
191        0     0     1     0     1     1     0     1     0     0
192        0     0     1     0     0     0     0     1     0     0
193        0     0     0     1     1     1     1     0     0     0
194        0     0     0     0     0     0     0     0     0     0
195        0     0     0     0     0     0     0     0     0     0  ];
196 subplot(221),imshow(bw1,'InitialMagnification','fit');
197 title('Generation 1');
198 
199 bw2=applylut(bw1,lut);
200 subplot(222),imshow(bw2,'InitialMagnification','fit'),
201 title('Generation 2');
202 
203 bw3=applylut(bw2,lut);
204 subplot(223),imshow(bw3,'InitialMagnification','fit');
205 title('Generation 3');
206 
207 temp=bw1;
208 for i=2:100
209     bw100=applylut(temp,lut);
210     temp=bw100;
211 end
212 subplot(224),imshow(bw100,'InitialMagnification','fit')
213 title('Generation 100');
214%显示Generation结果如下:

215 
216 %% getsequence
217 clc
218 clear
219 se=strel('diamond',5)
220 decomp=getsequence(se)%getsequence函数为得到分解的strel序列
221 decomp(1)
222 decomp(2)
223 
224 %% endpoints
225 clc
226 clear
227 
228 f1=imread('.\images\dipum_images_ch09\Fig0914(a)(bone-skel).tif');
229 subplot(121),imshow(f1);
230 title('原始形态骨架图像');
231 
232 g1=endpoints(f1);
233 %set(gcf,'outerposition',get(0,'screensize'));%运行完后自动生成最大的窗口
234 subplot(122),imshow(g1);
235 title('骨架图像的端点图像');
236 %骨架头像端点检测头像如下:
237 
238 f2=imread('.\images\dipum_images_ch09\Fig0916(a)(bone).tif');
239 figure,subplot(121),imshow(f2);
240 title('原始骨头图像');
241 
242 g2=endpoints(f2);
243 subplot(122),imshow(g2);
244 title('骨头图像端点头像');%结果是没有端点
245%骨头头像端点检测图像如下:

246 
247 %% bwmorph组合常见形态学之细化
248 clc
249 clear
250 f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
251 subplot(221),imshow(f);
252 title('指纹图像细化原图');
253 
254 g1=bwmorph(f,'thin',1);
255 subplot(222),imshow(g1);
256 title('指纹图像细化原图');
257 
258 g2=bwmorph(f,'thin',2);
259 subplot(223),imshow(g2);
260 title('指纹图像细化原图');
261 
262 g3=bwmorph(f,'thin',Inf);
263 subplot(224),imshow(g3);
264 title('指纹图像细化原图');
265%指纹图像细化过程显示如下:

266 
267 %% bwmorph组合常见形态学之骨骼化
268 clc
269 clear
270 f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
271 subplot(131),imshow(f);
272 title('指纹图像骨骼化原图');
273 
274 fs=bwmorph(f,'skel',Inf);
275 subplot(132),imshow(fs);
276 title('指纹图像骨骼化');
277 
278 for k=1:5
279     fs=fs&~endpoints(fs);
280 end
281 subplot(133),imshow(fs);
282 title('指纹图像修剪后骨骼话');
283%指纹图像骨骼化过程显示:

284 
285 %% 使用函数bwlabel标注连通分量
286 clc
287 clear
288 f=imread('.\images\dipum_images_ch09\Fig0917(a)(ten-objects).tif');
289 imshow(f),title('标注连通分量原始图像');
290%其结果显示如下:

291 
292 [L,n]=bwlabel(f);%L为标记矩阵,n为找到连接分量的总数
293 [r,c]=find(L==3);%返回第3个对象所有像素的行索引和列索引
294 
295 rbar=mean(r);
296 cbar=mean(c);
297 
298 figure,imshow(f)
299 hold on%保持当前图像使其不被刷新
300 for k=1:n
301     [r,c]=find(L==k);
302     rbar=mean(r);
303     cbar=mean(c);
304     plot(cbar,rbar,'Marker','o','MarkerEdgeColor','k',...
305          'MarkerFaceColor','k','MarkerSize',10);%这个plot函数用法不是很熟悉
306     plot(cbar,rbar,'Marker','*','MarkerFaceColor','w');%其中的marker为标记
307 end
308 title('标记所有对象质心后的图像');

309 
310 %% 由重构做开运算
311 clc
312 clear
313 f=imread('.\images\dipum_images_ch09\Fig0922(a)(book-text).tif');
314 subplot(321),imshow(f);
315 title('重构原始图像');
316 
317 fe=imerode(f,ones(51,1));%竖线腐蚀
318 subplot(322),imshow(fe);
319 title('使用竖线腐蚀后的结果');
320 
321 fo=imopen(f,ones(51,1));%竖线做开运算
322 subplot(323),imshow(fo);
323 title('使用竖线做开运算结果');
324 
325 fobr=imreconstruct(fe,f);%fe做标记
326 subplot(324),imshow(fobr);
327 title('使用竖线做重构开运算');
328 
329 ff=imfill(f,'holes');%对f进行孔洞填充
330 subplot(325),imshow(ff);
331 title('对f填充孔洞后的图像');
332 
333 fc=imclearborder(f,8);%清除边界,2维8邻接
334 subplot(326),imshow(fc);
335 title('对f清除边界后的图像');
336%图像重构过程显示如下:

337 
338 %% 使用顶帽变换和底帽变换
339 clc
340 clear
341 f=imread('.\images\dipum_images_ch09\Fig0926(a)(rice).tif');
342 subplot(221),imshow(f);
343 title('顶帽底帽变换原始图像');
344 
345 se=strel('disk',10);%产生结构元素
346 %顶帽变换是指原始图像减去其开运算的图像
347 %而开运算可用于补偿不均匀的背景亮度,所以用一个大的结构元素做开运算后
348 %然后用原图像减去这个开运算,就得到了背景均衡的图像,这也叫做是图像的顶帽运算
349 f1=imtophat(f,se);%使用顶帽变换
350 subplot(222),imshow(f1);
351 title('使用顶帽变换后的图像');
352 
353 %底帽变换是原始图像减去其闭运算后的图像
354 f2=imbothat(imcomplement(f),se);%使用底帽变换,为什么原图像要求补呢?
355 %f2=imbothat(f,se);%使用底帽变换
356 subplot(223),imshow(f2);
357 title('使用底帽变换后的图像');
358 
359 %顶帽变换和底帽变换联合起来用,用于增加对比度
360 f3=imsubtract(imadd(f,imtophat(f,se)),imbothat(f,se));%里面参数好像不合理?
361 subplot(224),imshow(f3);
362 title('使用顶帽底帽联合变换后图像');
363%顶帽底帽变换过程图像如下:

364 
365 %%使用开运算和闭运算做形态学平滑
366 %由于开运算可以除去比结构元素更小的明亮细节,闭运算可以除去比结构元素更小的暗色细节
367 %所以它们经常组合起来一起进行平滑图像并去除噪声
368 clc
369 clear
370 f=imread('.\images\dipum_images_ch09\Fig0925(a)(dowels).tif');
371 subplot(221),imshow(f);
372 title('木钉图像原图');
373 
374 se=strel('disk',5);%disk其实就是一个八边形
375 fo=imopen(f,se);%经过开运算
376 subplot(222),imshow(f);
377 title('使用半径5的disk开运算后的图像');
378 
379 foc=imclose(fo,se);
380 subplot(223),imshow(foc);
381 title('先开后闭的图像');
382 
383 fasf=f;
384 for i=2:5
385     se=strel('disk',i);
386     fasf=imclose(imopen(fasf,se),se);
387 end
388 subplot(224),imshow(fasf);
389 title('使用开闭交替滤波后图像');
390%使用开运算和闭运算做形态学平滑结果如下:

391 
392 %% 颗粒分析
393 clc
394 clear
395 f=imread('.\images\dipum_images_ch09\Fig0925(a)(dowels).tif');
396 
397 sumpixels=zeros(1,36);
398 for k=0:35
399     se=strel('disk',k);
400     fo=imopen(f,se);
401     sumpixels(k+1)=sum(fo(:));
402 end
403 
404 %可以看到,连续开运算之间的表面积会减少
405 plot(0:35,sumpixels),xlabel('k'),ylabel('surface area');
406 title('表面积和结构元素半径之间的关系');
407%其运算结果如下:   

408 
409 figure,plot(-diff(sumpixels));%diff()函数为差分或者近似倒数,即相邻2个之间的差值
410 xlabel('k'),ylabel('surface area reduction');
411 title('减少的表面积和结构元素半径之间的关系');
412%其运算结果如下:

413 
414 %% 使用重构删除复杂图像的背景
415 clc
416 clear
417 f=imread('.\images\dipum_images_ch09\Fig0930(a)(calculator).tif');
418 subplot(221),imshow(f);
419 title('灰度级重构原图像');
420 
421 f_obr=imreconstruct(imerode(f,ones(1,71)),f);
422 subplot(222),imshow(f_obr);
423 title('经开运算重构图');
424 
425 f_o=imopen(f,ones(1,71));
426 subplot(223),imshow(f_o);
427 title('经开运算后图');
428 
429 f_thr=imsubtract(f,f_obr);
430 subplot(224),imshow(f_thr);
431 title('顶帽运算重构图')
432%使用重构删除复杂图像的背景1:

433 
434 f_th=imsubtract(f,f_o)
435 figure,subplot(221),imshow(f_th);
436 title('经顶帽运算图');
437 
438 g_obr=imreconstruct(imerode(f_thr,ones(1,11)),f_thr);
439 subplot(222),imshow(g_obr);
440 title('用水平线对f_thr经开运算后重构图');
441 
442 g_obrd=imdilate(g_obr,ones(1,2));
443 subplot(223),imshow(g_obrd);
444 title('使用水平线对上图进行膨胀');
445 
446 f2=imreconstruct(min(g_obrd,f_thr),f_thr);
447 subplot(224),imshow(f2);
448 title('最后的重构结果');
449%使用重构删除复杂图像的背景2:

 

    形态学这一章很有用,因为它还可以应用在图像分割中。

 


相关文章推荐

对腐蚀 和 膨胀 的理解

原理:在特殊领域运算形式——结构元素(Sturcture Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结构是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑...
  • gbxvip
  • gbxvip
  • 2016-03-10 10:03
  • 6504

Matlab 图像处理 形态学 腐蚀 膨胀 开闭运算 连通分量

【转载】:http://www.cnblogs.com/tornadomeet/archive/2012/03/20/2408086.html Matlab 形态学图像处理(原文作者很是细心,感谢!)...

膨胀、腐蚀、开、闭运算——数字图像处理中的形态学

膨胀、腐蚀、开、闭运算是数学形态学最基本的变换。 本文主要针对二值图像的形态学 膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔); 腐蚀:把二值图像各1像素连接成分的边...

【OpenCV入门教程之十一】 形态学图像处理(二):开运算、闭运算、形态学梯度、顶帽、黑帽合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处。   文章链接: http://blog.csdn.net/poem_qianmo/articl...

形态学图像处理(二):开运算、闭运算、形态学梯度、顶帽、黑帽合辑

转载:http://blog.csdn.net/poem_qianmo/article/details/24599073 上篇文章中,我们重点了解了腐蚀和膨胀这两种最基本的形态学操作,而...

Matlab 图像处理 形态学 腐蚀 膨胀 开闭运算 连通分量

 1 %% 第9章 形态学处理 2 3 %% imdilate膨胀 4 clc 5 clear 6 7 A1=imread('.\images\dipum_images_ch09\Fig09...

数学形态学图像处理——图像腐蚀,膨胀,开闭运算(《学习OpenCV》练习题第五章第四题)

a部分练习的是图像相减法,图像的减法又称减影技术,是指对同一景物在不同时间拍摄的图像或同一景物在不同波段的图像进行相减。 其主要作用如下: 1、去除不需要的叠加性图案; 2、运动检测; 3、梯...

膨胀、腐蚀、开、闭运算——数字图像处理中的形态学

膨胀、腐蚀、开、闭运算是数学形态学最基本的变换。 本文主要针对二值图像的形态学 膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔); 腐蚀:把二值图像各1像素连接成分的边...

【数字图像处理】图像二值化,腐蚀膨胀,开闭运算,击中击不中变换

这是数字图像处理的第二次作业,包含的内容很多,有图像的二值化 膨胀 腐蚀 以及图像的开闭操作 击中击不中变换等。 1、图像的二值化 难点在于如何选取合适的Threshold。 基本思想:将二值化...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)