DPM(Deformable Parts Model)
Reference:
Object detection with discriminatively trained partbased models. IEEE Trans. PAMI, 32(9):1627–1645, 2010.
"Support Vector Machines for Multiple-Instance Learning,"Proc. Advances in Neural Information Processing Systems,2003.
作者主页:http://www.cs.berkeley.edu/~rbg/latent/index.html
补充 and 修正:
-
大体思路
DPM是一个非常成功的目标检测算法,连续获得VOC(Visual Object Class)07,08,09年的检测冠军。目前已成为众多分类器、分割、人体姿态和行为分类的重要部分。2010年Pedro Felzenszwalb被VOC授予"终身成就奖"。DPM可以看做是HOG(Histogrrams of Oriented Gradients)的扩展,大体思路与HOG一致。先计算梯度方向直方图,然后用SVM(Surpport Vector Machine )训练得到物体的梯度模型(Model)。有了这样的模板就可以直接用来分类了,简单理解就是模型和目标匹配。DPM只是在模型上做了很多改进工作。
上图是HOG论文中训练出来的人形模型。它是单模型,对直立的正面和背面人检测效果很好,较以前取得了重大的突破。也是目前为止最好的的特征(最近被CVPR20 13年的一篇论文 《Histograms of Sparse Codes for Object Detection》 超过了)。但是, 如果是侧面呢?所以自然我们会想到用多模型来做。DPM就使用了2个模型,主页上最新版本Versio5的程序使用了12个模型。