噪音与概率目标函数(Noise and Probalistic Target)
实际应用中的数据基本都是有干扰的:还是用信用卡发放问题举例子:
标记错误:应该发卡的客户标记成不发卡,或者两个数据相同的客户一个发卡一个不发卡;
输入错误:用户的数据本身就有错误,例如年收入少写一个0、性别写反了什么的。
================================================================================
<
本文探讨了在机器学习中如何处理噪音和错误,包括噪音与概率目标函数的关系、错误衡量的不同方法(如0/1错误和平方错误)、错误加权在特定场景中的应用,以及加权分类模型的概念。通过实例解释了错误率的计算和权重在影响学习算法选择中的作用。总结了在有噪声数据下机器学习模型的构建和优化策略。
还是用信用卡发放问题举例子:
标记错误:应该发卡的客户标记成不发卡,或者两个数据相同的客户一个发卡一个不发卡;
输入错误:用户的数据本身就有错误,例如年收入少写一个0、性别写反了什么的。
================================================================================
<
2980
2695
4436

被折叠的 条评论
为什么被折叠?