- 博客(472)
- 资源 (27)
- 收藏
- 关注
原创 mindie部署qwen3-8b
2. 确认目录文件权限是否如下所示,若存在不匹配项,则参考以下命令修改权限。否则要stop容器之后重新start,重新从《以下是在容器中的操作》开始操作。ctrl +d 让命令停止之后,需要等待一段事件让其释放,否则还会有占用。1. 若安装路径为默认路径,执行如下命令,进入MindIE安装目录。# 配置CANN环境,默认安装在/usr/local目录下。3. 运行以下命令初始化各组件环境变量,并开启日志打印。如果报错,可能有些线程没法去除,删除容器重新操作。# 配置模型仓环境变量。以下是在容器中的操作。
2026-01-26 18:23:11
95
原创 ollama
在资源管理器地址栏输入 %USERPROFILE%\.ollama。修改配置后,可以重启 Ollama 服务以确保配置生效。ollama.exe下载。
2026-01-21 17:15:11
17
原创 【python】Python文件读取中的换行符转换:你所需要知道的一切
输出:'line1\nline2\nline3\n' # 注意:最后可能也有换行符。如果file里面是\r\n的换行符,content是不是变成\n了?- 经典的 Mac OS 的 `\r` 也会被转换为 `\n`- 字符串中的 `\n` 会根据操作系统自动转换为对应的换行符。# 假设文件内容为:line1\r\nline2\r\nline3。- Windows 的 `\r\n` 会被转换为 `\n`**或者使用 `newline=''` 参数来禁用转换:**
2025-12-06 20:57:13
32
原创 图神经网络与大模型融合的理论综述:架构、机制与未来方向
然而,它们普遍缺乏对图结构数据的原生支持,无法直接处理边、节点之间的拓扑关系,这限制了其在关系密集型任务中的表现 [23]。2020年发布的BERT [16] 开启了自监督预训练时代,而2021年后,T5 [17]、PaLM [18]、LLaMA [19] 等模型相继推出,参数规模突破千亿级,展现出惊人的上下文学习(In-context Learning)与链式推理(Chain-of-Thought)能力 [20]。例如,将医学影像作为图节点,结合病理报告文本,实现更精准的疾病诊断 [58]。
2025-12-04 20:24:16
130
原创 大模型与知识图谱融合下的知识补全技术研究综述
随着人工智能技术的迅猛发展,大规模语言模型(Large Language Models, LLMs)与知识图谱(Knowledge Graphs, KGs)的融合已成为智能系统构建的核心方向。知识补全作为知识图谱增强的关键任务,旨在通过推理填补实体间缺失的关系或缺失的三元组。近年来,基于大模型的知识补全方法在准确性、泛化能力和上下文理解方面展现出显著优势。本文系统梳理了2021至2025年间大模型与知识图谱融合在知识补全领域的研究进展,从模型架构、融合机制、评估体系到应用场景等多个维度进行深入分析。
2025-12-04 19:56:50
83
原创 大模型在知识图谱中的应用:理论综述与前沿进展(2021–2025)
随着大语言模型(Large Language Models, LLMs)的迅猛发展,其在自然语言理解、生成与推理任务中展现出卓越能力。与此同时,知识图谱(Knowledge Graphs, KGs)作为结构化知识表示的核心范式,在信息检索、智能问答和决策支持等领域发挥着关键作用。近年来,将大模型与知识图谱深度融合已成为人工智能研究的前沿方向。本文系统梳理了2021至2025年间大模型在知识图谱中的核心应用场景,包括知识抽取、知识补全、知识融合、推理增强与问答系统构建。
2025-12-04 19:39:59
154
原创 大模型与知识图谱融合的理论综述:进展、挑战与未来方向
近年来,大语言模型(Large Language Models, LLMs)与知识图谱(Knowledge Graphs, KGs)的深度融合已成为人工智能领域的重要研究前沿。二者在语义理解、推理能力与结构化知识表达方面具有显著互补性。本文系统梳理了2021至2025年间关于大模型与知识图谱融合的核心研究进展,涵盖集成架构、关键技术方法、典型应用场景及现存挑战。
2025-12-04 19:35:18
164
原创 BM25的简单计算实例
text{TF 部分} = \frac{1 \times (1.2+1)}{1 + 1.2 \times \left(1 - 0.75 + 0.75 \times \frac{4}{4.667}\right)}所以 ( 1 - b + b \cdot \frac{|D|}{\text{avgdl}} \approx 0.25 + 0.64275 = 0.89275 )D2 只包含一个词,得分最低。乘以 IDF(手机):( 0.8954 \times 0.4700 \approx 0.4208 )
2025-12-03 22:36:38
61
原创 Word2Vec:理论综述与最新研究进展
Word2Vec作为自然语言处理(NLP)领域中最具影响力的词嵌入模型之一,自2013年由Mikolov等人提出以来,持续推动着语义表示学习的发展。本文系统梳理了2020至2024年间关于Word2Vec的理论演进、技术改进、应用拓展及与其他嵌入模型的对比研究。基于对近五年内高被引文献的综合分析,本文从模型架构、训练机制、局限性、融合策略与跨领域应用五个维度展开论述,揭示其在大语言模型(LLM)时代仍具重要价值,并为后续研究提供理论框架与实践参考。
2025-12-02 22:40:44
115
原创 词袋模型在自然语言处理中的理论演进与应用研究:一项系统性综述
词袋(Bag of Words, BoW)模型作为自然语言处理(Natural Language Processing, NLP)中最基础且最具影响力的文本表示方法之一,自20世纪末以来持续影响着信息检索、文本分类与情感分析等核心任务。尽管近年来以BERT为代表的深度上下文嵌入模型在性能上实现了显著超越,但BoW模型因其计算效率高、解释性强及可扩展性佳,在特定场景中仍具不可替代的价值。
2025-12-02 22:28:09
119
原创 BM25及其优化技术的理论综述:从经典信息检索到智能增强系统
摘要: 本文综述了BM25模型在信息检索领域的核心地位及其优化进展。作为经典的TF-IDF扩展模型,BM25凭借非线性词频饱和机制在排序性能上表现优异,广泛应用于搜索引擎、问答系统等领域。然而,其稀疏表示与语义理解的局限性促使研究者提出多种优化路径,包括查询扩展、混合稀疏-密集架构、神经参数优化及与大语言模型(LLM)的协同增强。研究表明,尽管密集检索在精度上超越传统方法,但优化后的BM25在资源受限场景中仍具竞争力,尤其在结合上下文感知与领域适配后展现出强大实用性。未来方向包括自适应参数调优、多模态融合与
2025-12-02 22:12:20
72
原创 检索增强生成(Retrieval-Augmented Generation, RAG)的理论综述:演进、架构范式与未来方向
检索增强生成(Retrieval-Augmented Generation, RAG)作为大语言模型(Large Language Models, LLMs)与外部知识库融合的关键技术,近年来在自然语言处理、智能问答、知识密集型任务中展现出显著优势。本文系统梳理了RAG的发展脉络,从其基本原理出发,深入剖析其核心架构范式——朴素RAG、高级RAG与模块化RAG,并对当前主流评估体系与基准测试进行批判性分析。
2025-12-02 22:01:15
132
原创 量子操作系统:架构、挑战与未来展望
随着量子计算从理论走向实践,构建能够有效管理和调度量子硬件资源的软件栈已成为该领域发展的关键瓶颈。作为连接量子硬件与上层应用的桥梁,量子操作系统(Quantum Operating System, QOS)的研究正日益受到学术界与工业界的关注。本文旨在对量子操作系统这一新兴领域进行全面的理论综述。我们首先阐述了量子操作系统的基本概念、核心目标及其与经典操作系统的根本性差异;其次,系统性地梳理了当前主流的量子操作系统架构范式,包括分层模型、微内核设计以及面向网络化量子节点的操作系统;
2025-12-01 23:07:36
173
原创 广义相对论与量子力学的融合:通往量子引力之路的理论综述
近年来,弦理论的研究前沿聚焦于AdS/CFT对偶(反德西特/共形场论对偶),这是一个具体的全息实现,它指出一个包含引力的(d+1)维反德西特时空中的量子引力理论,可以完全等价于其d维边界上的一个无引力的共形场论 [12]。例如,闭弦的最低能激发态恰好具有自旋为2、无质量的特性,这正是引力子(graviton)——传递引力的假想量子——所应具备的属性。此外,一些更新颖的观点,如将时空视为由量子比特网络构成的“量子电路”,或从量子信息的基本原理出发重构时空几何,正在成为量子引力研究的新前沿 [24]。
2025-12-01 22:59:13
108
原创 曲率引擎:理论框架、物理限制与前沿进展
自人类仰望星空以来,星际旅行便成为科学幻想的核心母题。然而,爱因斯坦的狭义相对论为任何具有静质量的物体设定了光速这一不可逾越的速度上限,使得跨越浩瀚星海的梦想似乎遥不可及。1994年,墨西哥物理学家米格尔·阿库别瑞(Miguel Alcubierre)在广义相对论的框架下,提出了一种革命性的时空几何构型——阿库别瑞度规(Alcubierre metric),为超光速旅行提供了一条理论上可行的路径 [1]。这一构型通过局部压缩飞船前方的时空并同时扩张其后方的时空,创造出一个“曲率泡”(warp bubble)
2025-12-01 22:52:10
340
原创 黎曼猜想:研究进展与理论综述
黎曼猜想(Riemann Hypothesis, RH)自1859年由伯恩哈德·黎曼提出以来,一直是纯粹数学领域中最著名、最深刻的未解之谜之一。该猜想断言黎曼ζ函数的所有非平凡零点的实部均为1/2。其证明或证伪不仅将彻底革新我们对素数分布的理解,还将对解析数论、代数几何乃至物理学产生深远影响。本文旨在对黎曼猜想进行一次系统性的理论综述,首先阐述其历史背景与精确表述,继而深入探讨其在数论中的核心地位及其众多等价命题。
2025-12-01 22:30:54
429
原创 至今无人破解的数学难题:千禧年大奖难题及其研究现状综述
数学作为一门探索模式与逻辑关系的基础科学,其发展史在很大程度上是由一系列深刻而富有挑战性的问题所驱动的。其中,那些历经数十年乃至数百年仍未被攻克的难题,不仅代表了人类认知的边界,也持续激发着最前沿的数学思想与技术革新。本文旨在对当代数学中最具代表性的未解难题——特别是由克雷数学研究所(Clay Mathematics Institute, CMI)于2000年确立的“千禧年大奖难题”(Millennium Prize Problems)——进行系统性综述。
2025-12-01 22:26:34
1016
原创 具身智能的仿真:理论、平台与前沿进展
与此相对,具身智能(Embodied Intelligence)强调智能体(Agent)必须拥有一个物理或虚拟的“身体”(Body),并通过与环境的持续、动态交互来学习、适应并完成任务[2]。RL是具身智能最自然的学习框架。真实世界的机器人实验成本高昂、周期漫长且存在安全风险,而高保真度的仿真环境则为智能体提供了近乎无限的、可复现的、安全的训练场域[4]。这种观点为AI研究指明了新的方向:不再仅仅追求更强大的算法,而是要同时设计更合适的“身体”(无论是物理的还是虚拟的)以及更丰富的交互环境。
2025-11-30 17:39:07
118
原创 具身智能:理论演进、技术体系与未来展望
一种智能形式,其中智能体的智能行为是其身体(无论是物理的还是虚拟的)与环境之间通过感知-行动循环(Perception-Action Loop)进行持续交互而涌现出来的[5]。身体(Body/Morphology):身体不仅是执行动作的载体,其自身的物理特性(如关节自由度、材料弹性、传感器布局)本身就编码了先验知识,能够简化控制策略并增强鲁棒性,即所谓的“形态计算”(Morphological Computation)[6]。例如,软体机器人的柔性结构使其能自然地适应不规则物体,无需复杂的力反馈控制。
2025-11-30 17:33:35
148
原创 三体问题求解:从混沌到秩序的探索
三体问题是天体力学和非线性动力学领域中最古老且最具挑战性的难题之一。自牛顿时代以来,其对确定性混沌、可积性与不可积性的深刻揭示,持续推动着数学、物理和计算科学的发展。本文旨在系统综述近五年来三体问题求解的理论进展与方法创新。首先,回顾了三体问题的历史脉络与基本理论框架,包括限制性三体问题模型及其在航天动力学中的应用。其次,重点阐述了数值积分方法在处理混沌轨道时面临的精度与效率挑战,并介绍了辛算法等保结构算法的最新发展。
2025-11-30 00:12:09
80
原创 多模态量子神经网络:融合、架构与前沿进展
MQNNs的核心思想在于,利用量子系统的高维希尔伯特空间和强大的表示能力,对来自不同模态的经典数据进行编码、处理和融合,从而有望在特征提取效率、模型泛化能力和计算复杂度等方面超越纯经典的多模态模型 \cite{qu2023qnmf}。他们将来自不同物理平台(如超导和离子阱)的量子设备的表征数据(如校准参数、噪声谱)视为不同的“模态”,并使用一个专门设计的MQNN来学习一个统一的、平台无关的设备指纹。鉴于当前量子硬件的局限性(如量子比特数少、相干时间短),完全在量子电路上实现复杂的多模态处理尚不现实。
2025-11-29 20:13:30
140
原创 基于Transformer的量子神经网络:理论、进展与展望
例如,在自回归采样中,我们可以依次确定每个自旋的状态(上或下),前一个自旋的状态会影响后一个自旋的概率分布。这与Transformer处理文本序列(每个词受上下文影响)或图像块序列(每个块受全局图像内容影响)的方式高度相似。因此,将Transformer作为QNNs的拟设,能够利用其强大的序列建模能力来更精确地捕捉量子态中的复杂关联[8]。
2025-11-29 19:59:31
187
原创 量子神经网络:理论基础、挑战与发展趋势综述
量子神经网络(Quantum Neural Networks, QNNs)作为量子计算与人工智能交叉领域的前沿方向,近年来受到广泛关注。其旨在利用量子力学原理增强传统神经网络的表达能力与计算效率,在模式识别、优化求解及生成建模等任务中展现出潜在优势。本文系统综述了量子神经网络的理论基础、典型架构、训练机制及其面临的核心挑战,重点分析了“贫瘠高原”(Barren Plateaus)问题的成因与缓解策略,并探讨了其在含噪声中等规模量子(NISQ)设备上的实现路径与应用前景。
2025-11-29 19:19:52
182
原创 下一代神经网络:架构革新、能效优化与智能融合的理论综述
此外,无监督学习方面,基于脉冲时序依赖可塑性(STDP)的局部学习规则被用于构建多层SNN,如Meng等人提出的Spiking Inception模块[6],有效提升了特征提取能力。例如,清华大学团队基于忆阻器阵列构建的SNN芯片[24],在CIFAR-10上实现>10 TOPS/W的能效比。脉冲神经网络(Spiking Neural Networks, SNNs)作为第三代神经网络模型,通过模拟生物神经元的离散脉冲发放机制,实现了事件驱动的稀疏计算,理论上可比传统ANNs降低数个数量级的能耗[2]。
2025-11-29 17:47:50
234
原创 KV缓存优化技术研究:基于非结构化稀疏剪枝的实验分析
随着大语言模型(Large Language Models, LLMs)规模的不断增长,其推理过程中的内存瓶颈问题日益突出。其中,键值缓存(Key-Value Cache, KV Cache)作为自回归解码的核心组件,其内存占用与上下文长度呈线性关系,在处理长序列时消耗巨大。本文聚焦于KV缓存的优化问题,系统梳理了当前主流的优化技术路线,并针对非结构化稀疏剪枝策略展开深入的实验研究。
2025-11-29 17:03:10
71
原创 梯度累加技术的优化研究
梯度累加(Gradient Accumulation)作为一种有效的内存优化技术,被广泛应用于大规模深度学习模型的训练过程中。本文系统性地研究了梯度累加技术对模型训练动态、收敛性及计算效率的影响。通过在合成数据集上构建控制变量实验,我们对比分析了不同累加步长下的损失函数变化、梯度范数演化以及训练耗时。实验结果表明,梯度累加在显著降低显存占用的同时,会引入额外的优化噪声,导致收敛速度减缓和最终性能的轻微下降。然而,其带来的计算效率提升(尤其在小批量场景下)使其成为资源受限环境下的重要权衡策略。
2025-11-29 16:47:14
57
原创 #知识图谱推理:理论、方法与发展趋势
首先,界定知识图谱推理的核心内涵与任务形式;虽然混合推理和基于路径的方法(如RuleGuider[29])提供了一定程度的解释,但这些解释往往是事后的、近似的,而非模型内在的推理机制。,如Peshevski等人[27]提出的系统,利用多个LLM驱动的智能体协同完成KG的构建与推理,实现了从非结构化文本到结构化知识的端到端自动化。(Knowledge Graph Reasoning)技术应运而生,旨在基于已有三元组(头实体,关系,尾实体)推断出缺失或隐含的知识,从而实现知识的自动补全与扩展[4]。
2025-11-29 12:26:54
90
原创 快速排序算法的性能优化与实证研究
本文旨在系统性地探究并整合多种快速排序的改进策略,包括混合排序(Hybrid Sorting)、三路划分(Three-way Partitioning)、内省排序(Introsort)以及模式击败快速排序(Pattern-Defeating Quicksort, Pdqsort),并通过严谨的实验设计对这些优化方案进行性能评估。实验结果有力地证明,融合了混合策略、三路划分、内省机制以及针对现代硬件和数据模式优化的现代快速排序变体(特别是Pdqsort),能够在保持算法简洁性的同时,提供卓越且鲁棒的性能。
2025-11-29 11:14:46
128
原创 【paper】最快排序算法:一项综合综述
摘要 排序算法的性能取决于数据特性、硬件环境和应用需求。经典比较排序算法(如快速排序、归并排序、堆排序)各有优劣,但均受限于O(n log n)的理论下界。现代混合算法(如内省排序、蒂姆排序、幂排序)通过动态策略优化性能,尤其适合真实数据场景。非比较排序(如基数排序、计数排序)在特定条件下可突破O(n log n)限制。并行排序和AI驱动排序是前沿方向。研究表明,算法选择需结合具体问题,不存在绝对“最快”的排序方法。 关键词:排序算法;时间复杂度;混合排序;非比较排序;并行优化
2025-11-29 10:37:05
122
原创 【paper】检索增强生成(RAG):原理、演进、应用与未来展望
检索增强生成(Retrieval-Augmented Generation, RAG)作为一种革命性的自然语言处理范式,通过将大型语言模型(Large Language Models, LLMs)的参数化知识与外部非参数化知识库动态结合,有效缓解了LLMs固有的幻觉、知识过时和领域适应性差等问题。自Lewis等人(2020)提出以来,RAG已成为连接封闭世界模型与开放世界信息的关键桥梁,在问答系统、智能客服、内容创作和科学研究等多个领域展现出巨大潜力。本文旨在对RAG领域进行全面而系统的综述。
2025-11-29 10:30:19
68
原创 postman笔记
1. 当文件中有+号或者%号的时候,需要转义字符,直接把链接复制到输入框里,然后params自动会填充url中的,然后选中value值,右键,encodeURLComponent即可。
2025-11-28 11:25:00
102
原创 coze使用记录
elasticsearch至少需要双核4g的,即可,不用docker-compose up了。4. 用firefox输入,不要用别的浏览器。远程访问要把.env中。
2025-10-23 00:07:39
117
原创 招投标术语
实质性响应 必须 must,老板要求我明天五点上班,我说"明天上班"是未实质性响应,我没有回答是未响应。负偏离,就像别人让我买50寸的,我只买了30寸的。非强制性响应就是不要求一定响应。
2025-10-17 18:52:02
131
原创 vllm多机部署
本文介绍了vLLM分布式推理集群的搭建流程。首先完成基础环境配置,包括安装CUDA工具包、创建conda虚拟环境,并通过清华源安装vLLM和Ray框架。其次详细说明Ray集群的搭建方法,包括主节点和工作节点的启动命令,以及网络优化参数设置。最后展示模型下载和分布式启动过程,以Qwen2.5-1.5B模型为例,演示了如何在两节点(每节点4卡)环境下部署服务。整个流程涵盖系统准备、集群配置到模型部署等关键环节,为大规模语言模型推理提供完整解决方案。
2025-09-27 10:51:17
267
原创 sglang使用笔记
如果一个170000的就取前面30000加上后面300个,取后面300个是为了可能的结束符或其他符号。1. 直接使用docker-compose启动获得一个container_id,然后使用。设置"--context-length", "50000"4. 重新启动container_id,使代码生效。sglang不能自己截断的bug修改,3. 直接修改docker里面的源代码。
2025-09-18 21:28:51
381
原创 【运维】flash attention安装出现错误及编译慢
该错误表明系统缺少GLIBC_2.32版本库。建议从Dao-AILab的GitHub发布页下载适配的flash-attention wheel文件(如flash_attn-2.7.4版本)。安装前需检查Python环境的CXX11 ABI兼容性,可通过torch._C._GLIBCXX_USE_CXX11_ABI命令验证。具体解决方案可参考相关GitHub issue #1708的讨论。
2025-07-19 16:07:14
584
原创 【vllm】L40分析
摘要:L40计算能力为8.9,不满足Flashattention3(FA3)对计算能力≥8且排除8.6/8.9/Blackwell架构(≥10)的要求。FA3是支持kv-cache-fp8的唯一版本,但L40受限于8.9的计算能力无法使用FA3功能。当前L40使用fp8模式时,既不能运行FA3也不支持dual_chunk_attention配置。该问题在vllm平台的cuda.py和fa_utils.py文件中均有明确限制条件定义。
2025-07-09 17:52:30
211
原创 升级cuda和驱动
在Linux系统安装CUDA时遇到显卡占用问题,需先关闭占用程序:1)运行CUDA/NVIDIA卸载程序;2)终止docker服务;3)检查并关闭占用/dev/nvidia*的进程。安装时添加--override参数强制运行,成功后重启docker服务。通过分步操作解决了驱动安装中的资源冲突问题。
2025-06-11 20:39:24
104
【医疗人工智能】基于NCCN指南的乳腺癌个性化治疗计划:Agentic-RAG与Graph-RAG方法性能对比及临床应用评估AI驱动的方法
2025-04-21
ICCV2019.pdf
2020-05-29
poly-yolo.pdf
2020-05-29
mnist数据集为keras
2018-06-04
弱监督目标检测论文.rar
2020-05-29
类似于陌路人人的聊天源码
2017-07-28
vivado2018-1的license文件
2018-06-11
dorefa-net
2018-07-10
中科院利用弱监督目标检测中的不稳定性.pdf
2020-05-29
原始MIT人脸库
2015-08-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅