主元素问题

http://blog.sina.com.cn/s/blog_4ae8f77f0100uptr.html


主元素问题 算法设计与分析 时间复杂度nlogn和n

  (2011-10-03 01:45:31)

一、主元素问题
  设T[0..n-1]是n个元素的数组。对任一元素x,设S(x)={i|T[i]=x}。当|S(x)|>n/2时,称x为T的主元素。
1) 如果T中元素存在序关系,按分治策略设计并实现一个线性时间算法,确定T[0..n-1]是否有一个主元素。
2) 若T中元素不存在序关系,只能测试任意两个元素是否相等,试设计并实现一个O(nlogn)有效算法,确定T是否有一个主元素。进一步,能找到一个线性时间算法吗?
注:实现的算法要求列出足够的实验结果。
 
1)  基于分治法的线性时间求主元素算法
中位数:数列排序后位于最中间的那个数。如果一个数列有主元素,那么必然是其中位数。求一个数列有没有主元素,只要看中位数是不是主元素。
找中位数的方法:选择一个元素作为划分起点,然后用快速排序的方法将小于它的移动到左边,大于它的移动到右边。这样就将元素划分为两个部分。此时,划分元素所在位置为k。如果k>n/2,那么继续用同样的方法在左边部分找;如果k<n/2就在右边部分找;k=n/2就找到了中位元素。
根据快速排序的思想,可以在平均时间复杂度为O(n)的时间内找出一个数列的中位数。然后再用O(n)的时间检查它是否是主元素。
对应的Java程序在MajorElement.java中
----------------------------------------------------------------------------------------
判断是否是主元素的伪代码:
master(A):
      len ← length[A]
      median ← randomizedSelect(A , 0 , n - 1 , n/2); ▹求中位数
      cnt ← 0
      ▹计算中位数出现次数
      for i ← 0 to len – 1
        do if A[i] = median
               then cnt ← cnt + 1
      if cnt > n/2
        then print "主元素:" +median + "出现次数:" + cnt
        else print "无主元素"
----------------------------------------------------------------------------------------
找一个序列中第k大的数伪代码
randomizedSelect(A , p , q , k):
      r ← randomizedPartition (p , q)  ▹找出划分元素r
      if r = k
        then return A[r]
        else if r > k
                   then randomizedSelect(A , p , r – 1, k)
                   else randomizedSelect(A , r + 1 , q , k)
----------------------------------------------------------------------------------------
实现随机划分的伪代码:
randomizedPartition(A , p , q ):
      rand ← random(p , q)
      exchange A[rand] ↔A[q]
      return partition(p , q)
----------------------------------------------------------------------------------------
基于快速排序思想的划分伪代码:
partition(A , p , q ):
      pivot ← A[q]
      i ← p – 1
      for j ← p to q – 1
           do if A[j] <= pivot
                then i ← i + 1
                            exchange A[i] ↔ A[j]
      exchange A[i + 1] ↔ A[q]
      return i + 1
----------------------------------------------------------------------------------------
master()中求中位数可以在平均时间复杂度为O(n)的时间内完成,检查中位数是否是主元素耗时O(n),所以时间复杂度为O(n)。
 
2) 无序关系时求主元素的O(nlgn)的算法
<!--[if !supportLists]-->■   <!--[endif]-->算法思想
    若T 中存在主元素,则将T 分为两部分后,T 的主元素也必为两部分中至少一部分的主元素,因此可用分治法。
将元素划分为两部分,递归地检查两部分有无主元素。算法如下:
a. 若T 只含一个元素,则此元素就是主元素,返回此数。
      b. 将T 分为两部分T1 和T2(二者元素个数相等或只差一个),分别递归调用此方法求其主元素m1 和m2。
      c. 若m1 和m2 都存在且相等,则这个数就是T 的主元素,返回此数。
d. 若m1 和m2 都存在且不等,则分别检查这两个数是否为T 的主元素,若有则返回此数,若无则返回空值。
e. 若m1 和m2 只有一个存在,则检查这个数是否为T 的主元素,若是则返回此数,若否就返回空值。
f. 若m1 和m2 都不存在,则T 无主元素,返回空值。
相应的Java程序在MasterElement.java中
-----------------------------------------------------------------------------------------
O(nlgn)的算法伪代码:
▹求T[p..q]中的主元素。返回主元素及其出现次数或空(表示无主元素)
CheckMaster(T , p , q):
      if p ← q
           then return T[p] and 1
      len ← q – p + 1
      r ← p + len / 2
      a and numa ← CheckMaster(T , p , r – 1)
      b and numb ← CheckMaster(T , r , q)
     
      if a = NIL and b = NIL
           then return NIL
      if a = NIL and b ≠ NIL
           then return CheckAnotherPart(T , len , p , r – 1 , b , numb)
      if a ≠ NIL and b = NIL
           then return CheckAnotherPart(T , len , r , q , a , numa)
      if a ≠ NIL and b ≠ NIL
then if a = b
           then numa ← numa + numb
                  return a and numa
                      else re ← CheckAnotherPart(T , len , p , r – 1 , b ,numb)
                             if re ≠ NIL
                                 then return re
                                  else return CheckAnotherPart(T, len, r, q, a, numa)
-----------------------------------------------------------------------------------------
▹检查候选主元素是否是主元素
CheckAnotherPart(T , len , p , q , c , numc):
      numc ← CheckNum(T , p , q , c) + numc
      if num > len/2
           then return c and numc
           else return NIL
-----------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------
▹计算T[p..q]中element出现的次数
CheckNum( T , p , q , element):
      cnt ← 0
      for i ← p to q
           do if T[i] = element
                      then cnt ← cnt + 1
      return cnt
----------------------------------------------------------------------------------------
<!--[if !supportLists]-->■   <!--[endif]-->时间复杂度分析
T(n)=2T(n/2)+n  
所以时间复杂度为O(nlgn)
 
 
3)无序关系时求主元素的O(n)算法
在一个集合中,删除两个不同的数,则集合的主元素保持不变。根据这个原理,可以很快求出主元素。
-------------------------------------------------------------------------------------
相应的Java程序在MainElement.java中
master(A):
      n ← length[A]
      count ← 1
      seed ← A[0]
      ▹找候选主元素
      for i ← 1 to n – 1
           do if A[i] = seed
                   then count ← count + 1
                   else if count > 0
                              then count ← count – 1
                              else seed ← A[i]
      ▹查找候选主元素是否是主元素
      count ← 0
      for i ← 0 to n – 1
        do if A[i] = seed
               then count ← count + 1
      if count > n/2
        then return seed and count
        else return NIL
-------------------------------------------------------------------------------------
时间复杂度为O(n)



  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值