动态规划解资源分配问题

有资金4万元,投资A、B、C三个项目,每个项目的投资效益与投入该项目的资金有关。三个项目A、B、C的投资效益(万吨)和投入资金(万元)的关系见下表:

      项目

投入资金

A

B

C

1万元

15万吨

13万吨

11万吨

2万元

28万吨

29万吨

30万吨

3万元

40万吨

43万吨

45万吨

4万元

51万吨

55万吨

58万吨

 

 

 

 

 

 

 

 

 

求对三个项目的最优投资分配,使总投资效益最大。

阶段k:每投资一个项目作为一个阶段;

状态变量xk:投资第k个项目前的资金数;

决策变量dk:第k个项目的投资;

决策允许集合:0dkxk

状态转移方程:xk+1=xk-dk

阶段指标:vk(xk,dk)见表中所示;

递推方程:fk(xk)=max{vk(xk,dk)+fk+1(xk+1)}

终端条件:f4(x4)=0

k=4f4(x4)=0

k=30d3x3x4=x3-d3

x3

D3(x3)

x4

v3(x3,d3)

v3(x3,d3)+f4(x4)

f3(x3)

d3*

0

0

0

0

0+0=0

0

0

1

0

1

0

0+0=0

11

1

1

0

11

11+0=11*

2

0

2

0

0+0=0

30

2

1

1

11

11+0=11

2

0

30

30+0=30*

3

0

3

0

0+0=0

45

3

1

2

11

11+0=11

2

1

30

30+0=30

3

0

45

45+0=45*

4

0

4

0

0+0=0

58

4

1

3

11

11+0=11

2

2

30

30+0=30

3

1

45

45+0=45

4

0

58

58+0=58*

 

k=20d2x2x3=x2-d2

x2

D2(x2)

x3

v2(x2,d2)

v2(x2,d2)+f3(x3)

f2(x2)

d2*

0

0

0

0

0+0=0

0

0

1

0

1

0

0+11=11

13

1

1

0

13

13+0=13*

2

0

2

0

0+30=30*

30

0

1

1

13

13+11=24

2

0

29

29+0=29

3

0

3

0

0+45=45*

45

0

1

2

13

13+30=43

2

1

29

29+11=40

3

0

43

43+0=43

4

0

4

0

0+58=58

59

2

1

3

13

13+45=58

2

2

29

29+30=59*

3

1

43

43+11=54

4

0

55

55+0=55

 

k=10d1x1x2=x1-d1

x1

D1(x1)

x2

v1(x1,d1)

v1(x1,d1)+f2(x2)

f1(x1)

d1*

4

0

4

0

0+59=59

60

1

1

3

15

15+45=60*

2

2

28

28+30=58

3

1

40

40+13=53

4

0

51

51+0=51

最优解为x1=4, d1*=1, x2=x1-d1=3, d2*=0, x3=x2-d2*=3, d3=3, x4=x3-d3=0

即项目A投资1万元,项目B投资0万元,项目C投资3万元,最大效益为60万吨。

 

实验课程:算法分析与设计 实验名称:用动态规划法求资源分配问题 (验证型实验) 实验目标: (1)掌握用动态规划方法求实际问题的基本思路。 (2)进一步理动态规划方法的实质,巩固设计动态规划算法的基本步骤。 实验任务: (1)设计动态规划算法求资源分配问题,给出算法的非形式描述。 (2) 在Windows环境下用C 语言实现该算法。计算10个实例,每个实例中n=30, m=10, Ci j为随机产生于范围(0,103)内的整数。记录各实例的数据及执行结果(即最优分配方案、最优分配方案的值)、运行时间。 (3)从理论上分析算法的时间和空间复杂度,并由此释相应的实验结果。 实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1) 根据实验目标,明确实验的具体任务; (2) 分析资源分配问题,获得计算其最优值的递推计算公式; (3) 设计求问题动态规划算法,并编写程序实现算法; (4) 设计实验数据并运行程序、记录运行的结果; (5) 分析算法的时间和空间复杂度,并由此释释相应的实验结果; 问题分析: 问题描述: 某厂根据计划安排,拟将n台相同的设备分配给m个车间,各车间获得这种设备后,可以为国家提供盈利Ci j(i台设备提供给j号车间将得到的利润,1≤i≤n,1≤j≤m) 。问如何分配,才使国家得到最大的盈利? 算法基本思想: 本问题是一简单资源分配问题,由于具有明显的最优子结构,故可以使用动态规划,用状态量f[i][j]表示用i台设备分配给前j个车间的最大获利,那么显然有f[i][j] = max{ f[k][j–1] + c[i-k][j] },0<=k<=i。再用p[i][j]表示获得最优时第j号车间使用的设备数为i-p[i][j],于是从结果倒推往回求即可得到分配方案。程序实现时使用顺推,先枚举车间数,再枚举设备数,再枚举状态转移时用到的设备数,简单3重for循环语句即可完成。时间复杂度为O(n^2*m),空间复杂度为O(n*m),倘若此题只需求最大获利而不必求方案,则状态量可以减少一维,空间复杂度优化为O(n)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值