[机器学习入门] 李宏毅机器学习笔记-22(Transfer Learning part 2;迁移学习 part 2)

本文深入探讨了迁移学习的第四象限——零样本学习,包括其代表性的零样本学习方法和存在的问题。介绍了如何利用属性嵌入和词嵌入解决未知类别分类,并提出改进的损失函数。同时,提到了零样本学习的应用示例。此外,还简要提及了第二象限的自我教学学习和第三象限的自我教学聚类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[机器学习入门] 李宏毅机器学习笔记-22(Transfer Learning part 2;迁移学习 part 2)

PDF VIDEO

接part 1

第四象限

Target data unlabelled,Source Data labelled

Zero-shot learning

今天想要辨识草泥马,但是source data中没有一只草泥马!

这里写图片描述

Representing each class by its attributes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值