AutoML NAS 调研(CVPR2019)

背景- Why we need to have AutoML AutoML是个很宽泛的概念,宽泛到任何机器学习任务都可以理论上用AutoML完成,这就带来了很大的想象空间。最近做了一个关于此的调研工作,调研重点放在了NAS网络搜索上,因为这是目前研究的热点,在最新的CVPR2019上,该领域...

2019-06-20 11:52:31

阅读数 61

评论数 0

[深度学习] 车道线检测调研(lane detection)

背景 车道线检测作为自动驾驶领域的常规工作,在深度学习的浪潮中又有了很大的进步,在此分享我所做的调研工作,部分为ppt截图,为了方便请谅解。 车道线检测工作的局限性 如上图所示,车道线检测工作的baseline并不明确,不同的方法与不同的场景应用都有各自的局限性。例如: 输出类型:ma...

2019-04-19 13:43:32

阅读数 409

评论数 0

[机器学习入门] 经典台大李宏毅机器学习课程从这里开始

TOPIC CONTENTS BLOG PDF VIDEO 【1】Learning Map(学习导图) blog pdf video 【2】Regression:Case Study ;回归:案例研究 blog pdf video 【3...

2017-08-21 23:01:26

阅读数 65368

评论数 24

[论文学习]DeepLabV3+: Encoder-Decoder with Atrous Separable Convolution for Semantic Image

DeepLabV3+: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Abstract 思想

2019-05-29 17:54:32

阅读数 30

评论数 0

[论文学习] OCNet: Object Context Network for Scene Parsing

OCNet OCNet与DANet在思想上几乎一模一样,不再赘述。

2019-05-29 17:52:52

阅读数 23

评论数 0

[论文学习] DANet:Dual Attention Network for Scene Segmentation

DANet:Dual Attention Network for Scene Segmentation Overview 基础网络为dilated ResNet(与DeepLab相同),最后得到的feature map大小为输入图像的1/8.之后使两个并行的attention module分别捕...

2019-05-29 17:50:56

阅读数 24

评论数 0

[论文学习] TensorMask: A Foundation for Dense Object Segmentation

TensorMask: A Foundation for Dense Object Segmentation Abstract 掩膜的结构化表示 4D张量详解 张量尺度金字塔 Result

2019-05-29 17:38:07

阅读数 17

评论数 0

[论文笔记] 弱监督语义分割 半监督语义分割

Adversarial learning for semi-supervised semantic segmentation BLOG @vi_wsc GAN生成对抗网络:由两个子网络组成,generator和discriminator,在训练过程中,这两个子网络进行着最小最大值机制,genera...

2019-05-16 13:35:12

阅读数 53

评论数 0

街景语义分割数据集总结

汇总 SYNTHIA-Dataset 一个大规模的虚拟城市的真实感渲染图数据集,带有语义分割信息,是为了在自动驾驶或城市场景规划等研究领域中的场景理解而提出的。提供了11个类别物体(分别为空、天空、建筑、道路、人行道、栅栏、植被、杆、车、信号标志、行人、骑自行车的人)细粒度的像素级别的标注。包...

2019-05-06 13:41:05

阅读数 107

评论数 0

[车道线检测论文学习] Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks

车道线检测 Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks Abstract Architecture Experiment

2019-04-30 15:44:55

阅读数 76

评论数 0

[车道线检测论文学习] LineNet: a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environm

车道线检测 LineNet: a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environments Abstract Line prediction layer Zoom module Exp...

2019-04-30 15:20:42

阅读数 98

评论数 0

[车道线检测论文学习] Towards End-to-End Lane Detection: an Instance Segmentation Approach

车道线检测 Towards End-to-End Lane Detection: an Instance Segmentation Approach Abstract Semantic Instance Segmentation with a Discriminative Loss Funct...

2019-04-29 22:47:22

阅读数 45

评论数 0

[车道线检测论文学习]SCNN-Spatial As Deep: Spatial CNN for Traffic Scene Understanding

(车道线检测)Lane Detection SCNN-Spatial As Deep: Spatial CNN for Traffic Scene Understanding 小声BB:SCNN方法思路很简单,对网络结构的调整也不大,计算量没有太大增加,但该方法并未被广泛应用,故对该方法的有效性...

2019-04-29 15:12:54

阅读数 94

评论数 0

记一次图像分割项目的dataset的制作

应用Mask-RCNN做染色体图像分割,染色体存在交叉重叠情况,故需要标注重叠染色体作为训练集,于是带来了两个问题,数据不足的情况下,重叠染色体到哪里找?重叠染色体的标注如何做? 问题1解决:用单染色体图叠加。 问题2解决:用多通道图像作为标注,每个通道标注一个分割目标。 效果从上图到...

2018-01-31 21:47:47

阅读数 1307

评论数 0

[计算机图形学经典算法] Liang-Barsky(梁友栋-Barsky) 算法 (附Matlab代码)

刚学习了计算机图形学这门课程,为奠定根基的算法所倾倒,特此记录一二。 Liang-Barsky(梁友栋-Barsky) 梁友栋,福建福州人,1956-1960年,复旦大学,师从苏步青先生,80年代初,提出了Liang-Barskey裁剪算法,1984-1990年任浙江大学数学系主任。1...

2018-01-28 11:45:10

阅读数 4544

评论数 2

[计算机图形学经典算法] Cohen-Sutherland 算法 (附Matlab代码)

刚学习了计算机图形学这门课程,为奠定根基的算法所倾倒,特此记录一二。 Cohen-Sutherland 算法 编码 Cohen-Sutherland 算法是早期图形学算法中的一颗明珠,这种算法使用了一种较少使用的编码方法,较好地解决了直线段的剪裁问题,在效率和简便性上均表现良...

2018-01-27 11:49:04

阅读数 1455

评论数 2

[计算机图形学经典算法] 区域填充

刚学习了计算机图形学这门课程,为奠定根基的算法所倾倒,特此记录一二。 区域填充是指从区域内的某一个象素点(种子点)开始,由内向外将填充色扩展到整个区域内的过程。 区域是指已经表示成点阵形式的填充图形,它是相互连通的一组像素的集合。(前面描述的 X - 扫描线算法适用于顶点表达的多边形) 区域...

2018-01-27 11:03:34

阅读数 3240

评论数 0

[计算机图形学经典算法] 多边形的扫描转换

刚学习了计算机图形学这门课程,为奠定根基的算法所倾倒,特此记录一二。 计算机图形学中的一个重要问题是在一个区域的内部填上不同的色彩或灰度。这里的区域分为两类,一类是多边形;另一类是以像素点集合表示的区域。 (注意,两类的区别是在图形学中的表达方式不一样) 在图形学中,多边形往往是由有序的顶...

2018-01-27 10:44:52

阅读数 3002

评论数 0

[计算机图形学经典算法] 直线段和圆弧在屏幕上的绘制 (附matlab代码)

刚学习了计算机图形学这门课程,为奠定根基的算法所倾倒,特此记录一二。 直线—中点 Bresenham 算法 DDA算法在效率上较低的原因是需要计算 k,并以之作为累加项。一个直观的改进方式,是在整个运算过程中将涉及到的数值乘以 dx (或dy),转化为整型进行运算。 中点 Bresen...

2018-01-27 00:41:51

阅读数 1694

评论数 0

[生而为人-思考] Knowledge Cooking -7th 分享会记录

“一年狂卖7.5亿的洗脑神药,请放过中国老人” 每年2.6亿广告费、550万研发费 “为什么中国‘民科’多?因为常年听假科学故事” 特朗普税改通过 敦煌数字化全景漫游 https://www.e-dunhuang.com/index.htm 16万幅世界名画 https://gallerix...

2017-12-09 19:17:00

阅读数 326

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭